cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056357 Number of bracelet structures using exactly two different colored beads.

This page as a plain text file.
%I A056357 #26 Oct 24 2019 23:02:09
%S A056357 0,1,1,3,3,7,8,17,22,43,62,121,189,361,611,1161,2055,3913,7154,13647,
%T A056357 25481,48733,92204,176905,337593,649531,1246862,2405235,4636389,
%U A056357 8964799,17334800,33588233,65108061,126390031,245492243,477353375,928772649,1808676325
%N A056357 Number of bracelet structures using exactly two different colored beads.
%C A056357 Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.
%C A056357 Also the number of distinct twills of period n. [Grünbaum and Shephard]
%D A056357 M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
%H A056357 Andrew Howroyd, <a href="/A056357/b056357.txt">Table of n, a(n) for n = 1..1000</a>
%H A056357 B. Grünbaum and G. C. Shephard, <a href="http://www.jstor.org/stable/2690105">Satins and twills: an introduction to the geometry of fabrics</a>, Math. Mag., 53 (1980), 139-161. See Theorem 2. [From _N. J. A. Sloane_, Jul 13 2011]
%F A056357 a(n) = A000011(n) - 1.
%F A056357 For an explicit formula see the Maple program.
%p A056357 with(numtheory);
%p A056357 rho:=n->(3+(-1)^n)/2;
%p A056357 f:=n->2^((n+rho(n))/2-2) + (1/(4*n))*(add(phi(d)*rho(d)*2^(n/d), d in divisors(n))) - 1;
%p A056357 # _N. J. A. Sloane_, Jul 13 2011
%o A056357 (PARI) a(n) = {if(n<1, 0, 2^(n\2-1) - 1 + sumdiv(n, k, eulerphi(2*k) * 2^(n/k)) / (4*n))}; \\ _Andrew Howroyd_, Oct 24 2019
%Y A056357 Column 2 of A152176.
%Y A056357 Cf. A056295.
%K A056357 nonn
%O A056357 1,4
%A A056357 _Marks R. Nester_
%E A056357 Terms a(32) and beyond from _Andrew Howroyd_, Oct 24 2019