A056411 Number of step cyclic shifted sequences using a maximum of three different symbols.
3, 6, 10, 21, 24, 92, 78, 327, 443, 1632, 1698, 12769, 10464, 57840, 122822, 348222, 476052, 3597442, 3401970, 22006959, 41597374, 142677588, 186077886, 1476697627, 1694658003, 8147282460, 15690973754, 68149816689, 84520682160, 857935531804, 664166389302, 3620293575942, 8422974597554, 30656600391720, 59561470990362
Offset: 1
Keywords
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- D. Z. Dokovic, I. Kotsireas et al., Charm bracelets and their application to the construction of periodic Golay pairs, arXiv:1405.7328 [math.CO], 2014.
- R. C. Titsworth, Equivalence classes of periodic sequences, Illinois J. Math., 8 (1964), 266-270.
Programs
-
Mathematica
M[j_, L_] := Module[{m=1}, While[Sum[j^i, {i, 0, m-1}] ~Mod~ L != 0, m++]; m]; c[j_, t_, n_] := Sum[1/M[j, n/GCD[n, u*(j-1)+t]], {u, 0, n-1}]; CB[n_, k_] = If [n==1, k, 1/(n*EulerPhi[n])*Sum[If[1==GCD[n, j], k^c[j, t, n], 0], {t, 0, n-1}, {j, 1, n-1}]]; Table[Print[cb = CB[n, 3]]; cb, {n, 1, 35}] (* Jean-François Alcover, Dec 04 2015, after Joerg Arndt *)
-
PARI
\\ see p.3 of the Dokovic et al. reference M(j, L)={my(m=1); while ( sum(i=0, m-1, j^i) % L != 0, m+=1 ); m; } c(j, t, n)=sum(u=0,n-1, 1/M(j, n / gcd(n, u*(j-1)+t) ) ); CB(n, k)=if (n==1,k, 1/(n*eulerphi(n)) * sum(t=0,n-1, sum(j=1,n-1, if(1==gcd(n,j), k^c(j,t,n), 0) ) ) ); for(n=1, 66, print1(CB(n,3),", ")); \\ second argument k=3, 4, 5, 6 respectively gives A056411, A056412, A056413, A056414. \\ Joerg Arndt, Aug 27 2014
Formula
Refer to Titsworth or slight "simplification" in Nester.
Extensions
Added more terms, Joerg Arndt, Aug 27 2014
Comments