A056414 Number of step cyclic shifted sequences using a maximum of six different symbols.
6, 21, 56, 231, 462, 4291, 6966, 57561, 188866, 1519035, 3302922, 45921281, 83747286, 933081411, 3920355712, 22075451286, 62230996506, 940379310731, 1781757016326, 22856965214727, 87052415641136, 598280600648031, 1560731765058606, 24680195365765751, 56860576713326910, 546736312124316741, 2105947271634851386
Offset: 1
Keywords
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- D. Z. Dokovic, I. Kotsireas et al., Charm bracelets and their application to the construction of periodic Golay pairs, arXiv:1405.7328 [math.CO], 2014.
- R. C. Titsworth, Equivalence classes of periodic sequences, Illinois J. Math., 8 (1964), 266-270.
Programs
-
Mathematica
M[j_, L_] := Module[{m = 1}, While[Sum[ j^i, {i, 0, m - 1}] ~Mod~ L != 0, m++]; m]; c[j_, t_, n_] := Sum[ 1/M[j, n / GCD[n, u*(j - 1) + t] ], {u, 0, n - 1}]; CB[n_, k_] = If[n == 1, k, 1/(n*EulerPhi[n]) * Sum[ If[1 == GCD[n, j], k^c[j, t, n], 0], {t, 0, n-1}, {j, 1, n-1}]]; Table[ Print[ cb = CB[n, 6]]; cb, {n, 1, 27}] (* Jean-François Alcover, Dec 04 2015, after Joerg Arndt *)
-
PARI
\\ see p.3 of the Dokovic et al. reference M(j, L)={my(m=1); while ( sum(i=0, m-1, j^i) % L != 0, m+=1 ); m; } c(j, t, n)=sum(u=0,n-1, 1/M(j, n / gcd(n, u*(j-1)+t) ) ); CB(n, k)=if (n==1,k, 1/(n*eulerphi(n)) * sum(t=0,n-1, sum(j=1,n-1, if(1==gcd(n,j), k^c(j,t,n), 0) ) ) ); for(n=1, 66, print1(CB(n,6),", ")); \\ Joerg Arndt, Aug 27 2014
Formula
Refer to Titsworth or slight "simplification" in Nester.
Extensions
Added more terms, Joerg Arndt, Aug 27 2014
Comments