cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056463 Number of primitive (aperiodic) palindromes using exactly two different symbols.

This page as a plain text file.
%I A056463 #14 Feb 19 2024 01:49:04
%S A056463 0,0,2,2,6,4,14,12,28,24,62,54,126,112,246,240,510,476,1022,990,2030,
%T A056463 1984,4094,4020,8184,8064,16352,16254,32766,32484,65534,65280,131006,
%U A056463 130560,262122,261576,524286,523264,1048446,1047540,2097150,2094988,4194302,4192254
%N A056463 Number of primitive (aperiodic) palindromes using exactly two different symbols.
%D A056463 M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
%H A056463 Andrew Howroyd, <a href="/A056463/b056463.txt">Table of n, a(n) for n = 1..1000</a>
%F A056463 a(n) = Sum_{d|n} mu(d)*A056453(n/d).
%F A056463 G.f.: Sum_{k>=1} mu(k)*2*x^(3*k)/((1 - 2*x^(2*k))*(1 - x^k)). - _Andrew Howroyd_, Sep 29 2019
%o A056463 (PARI) seq(n)={Vec(sum(k=1, n\3, moebius(k)*2*x^(3*k)/((1 - 2*x^(2*k))*(1 - x^k)) + O(x*x^n)), -n)} \\ _Andrew Howroyd_, Sep 29 2019
%o A056463 (Python)
%o A056463 from sympy import mobius, divisors
%o A056463 def A056463(n): return sum(mobius(n//d)*((1<<(d+1>>1))-2) for d in divisors(n, generator=True)) # _Chai Wah Wu_, Feb 18 2024
%Y A056463 Column 2 of A327873.
%Y A056463 Cf. A056453, A056458.
%K A056463 nonn
%O A056463 1,3
%A A056463 _Marks R. Nester_
%E A056463 Terms a(32) and beyond from _Andrew Howroyd_, Sep 28 2019