This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056463 #14 Feb 19 2024 01:49:04 %S A056463 0,0,2,2,6,4,14,12,28,24,62,54,126,112,246,240,510,476,1022,990,2030, %T A056463 1984,4094,4020,8184,8064,16352,16254,32766,32484,65534,65280,131006, %U A056463 130560,262122,261576,524286,523264,1048446,1047540,2097150,2094988,4194302,4192254 %N A056463 Number of primitive (aperiodic) palindromes using exactly two different symbols. %D A056463 M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2] %H A056463 Andrew Howroyd, <a href="/A056463/b056463.txt">Table of n, a(n) for n = 1..1000</a> %F A056463 a(n) = Sum_{d|n} mu(d)*A056453(n/d). %F A056463 G.f.: Sum_{k>=1} mu(k)*2*x^(3*k)/((1 - 2*x^(2*k))*(1 - x^k)). - _Andrew Howroyd_, Sep 29 2019 %o A056463 (PARI) seq(n)={Vec(sum(k=1, n\3, moebius(k)*2*x^(3*k)/((1 - 2*x^(2*k))*(1 - x^k)) + O(x*x^n)), -n)} \\ _Andrew Howroyd_, Sep 29 2019 %o A056463 (Python) %o A056463 from sympy import mobius, divisors %o A056463 def A056463(n): return sum(mobius(n//d)*((1<<(d+1>>1))-2) for d in divisors(n, generator=True)) # _Chai Wah Wu_, Feb 18 2024 %Y A056463 Column 2 of A327873. %Y A056463 Cf. A056453, A056458. %K A056463 nonn %O A056463 1,3 %A A056463 _Marks R. Nester_ %E A056463 Terms a(32) and beyond from _Andrew Howroyd_, Sep 28 2019