A056494 Number of primitive (period n) periodic palindromes using a maximum of three different symbols.
3, 3, 6, 12, 24, 42, 78, 144, 234, 456, 726, 1392, 2184, 4290, 6528, 12960, 19680, 39078, 59046, 117600, 177060, 353562, 531438, 1061280, 1594296, 3186456, 4782726, 9561552, 14348904, 28690752, 43046718
Offset: 1
Keywords
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Programs
-
Mathematica
mx=40;gf[x_,k_]:=Sum[ MoebiusMu[n]*Sum[Binomial[k,i]x^(n i),{i,0,2}]/( 1-k x^(2n)),{n,mx}]; CoefficientList[Series[gf[x,3],{x,0,mx}],x] (* Herbert Kociemba, Nov 29 2016 *)
Formula
a(n) = Sum_{d|n} mu(d)*A038754(n/d+1).
From Herbert Kociemba, Nov 29 2016: (Start)
More generally, gf(k) is the g.f. for the number of necklaces with reflectional symmetry but no rotational symmetry and beads of k colors.
gf(k): Sum_{n>=1} mu(n)*Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)). (End)
Comments