A056495 Number of primitive (period n) periodic palindromes using a maximum of four different symbols.
4, 6, 12, 30, 60, 138, 252, 600, 1008, 2490, 4092, 10050, 16380, 40698, 65460, 163200, 262140, 654192, 1048572, 2618850, 4194036, 10481658, 16777212, 41932200, 67108800, 167755770, 268434432, 671047650
Offset: 1
Keywords
Examples
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Programs
-
Mathematica
mx=40;gf[x_,k_]:=Sum[ MoebiusMu[n]*Sum[Binomial[k,i]x^(n i),{i,0,2}]/( 1-k x^(2n)),{n,mx}]; CoefficientList[Series[gf[x,4],{x,0,mx}],x] (* Herbert Kociemba, Nov 29 2016 *)
Formula
a(n) = Sum_{d|n} mu(d)*A056486(n/d).
From Herbert Kociemba, Nov 29 2016: (Start)
More generally, gf(k) is the g.f. for the number of necklaces with reflectional symmetry but no rotational symmetry and beads of k colors.
gf(k): Sum_{n>=1} mu(n)*Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)). (End)
Comments