cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056498 Number of primitive (period n) periodic palindromes using exactly two different symbols.

This page as a plain text file.
%I A056498 #10 Sep 29 2019 12:02:43
%S A056498 0,1,2,3,6,7,14,18,28,39,62,81,126,175,246,360,510,728,1022,1485,2030,
%T A056498 3007,4094,6030,8184,12159,16352,24381,32766,48849,65534,97920,131006,
%U A056498 196095,262122,392364,524286,785407,1048446,1571310,2097150,3143497,4194302,6288381
%N A056498 Number of primitive (period n) periodic palindromes using exactly two different symbols.
%C A056498 For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
%D A056498 M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
%H A056498 Andrew Howroyd, <a href="/A056498/b056498.txt">Table of n, a(n) for n = 1..1000</a>
%F A056498 a(n) = Sum_{d|n} mu(d)*A027383(n/d-2) assuming that A027383(-1)=0.
%F A056498 G.f.: Sum_{k>=1} mu(k)*x^(2*k)*(1 + x^k)/((1 - x^k)*(1 - 2*x^(2*k))). - _Andrew Howroyd_, Sep 29 2019
%o A056498 (PARI) seq(n)={Vec(sum(k=1, n\2, moebius(k)*x^(2*k)*(1 + x^k)/((1 - x^k)*(1 - 2*x^(2*k))) + O(x*x^n)), -n)} \\ _Andrew Howroyd_, Sep 29 2019
%Y A056498 Column 2 of A327878.
%Y A056498 Cf. A027383, A056463.
%K A056498 nonn
%O A056498 1,3
%A A056498 _Marks R. Nester_
%E A056498 Terms a(32) and beyond from _Andrew Howroyd_, Sep 28 2019