cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056555 Smallest number k (k>0) such that n*k is a perfect 4th power.

Original entry on oeis.org

1, 8, 27, 4, 125, 216, 343, 2, 9, 1000, 1331, 108, 2197, 2744, 3375, 1, 4913, 72, 6859, 500, 9261, 10648, 12167, 54, 25, 17576, 3, 1372, 24389, 27000, 29791, 8, 35937, 39304, 42875, 36, 50653, 54872, 59319, 250, 68921, 74088, 79507, 5324, 1125
Offset: 1

Views

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(64) = 4 because the smallest 4th power divisible by 64 is 256 and 64*4 = 256.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Mod[4 - e, 4]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 08 2020 *)
  • PARI
    a(n,f=factor(n))=f[,2]=-f[,2]%4; factorback(f) \\ Charles R Greathouse IV, Apr 24 2020

Formula

a(n) = A053167(n)/n = n^3/A000190(n)^4 = A056553(n)/A053165(n).
Multiplicative with a(p^e) = p^((4 - e) mod 4). - Amiram Eldar, Sep 08 2020
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(16)/(4*zeta(4))) * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^7 + 1/p^8) = 0.1537848996... . - Amiram Eldar, Oct 27 2022