A056555 Smallest number k (k>0) such that n*k is a perfect 4th power.
1, 8, 27, 4, 125, 216, 343, 2, 9, 1000, 1331, 108, 2197, 2744, 3375, 1, 4913, 72, 6859, 500, 9261, 10648, 12167, 54, 25, 17576, 3, 1372, 24389, 27000, 29791, 8, 35937, 39304, 42875, 36, 50653, 54872, 59319, 250, 68921, 74088, 79507, 5324, 1125
Offset: 1
Examples
a(64) = 4 because the smallest 4th power divisible by 64 is 256 and 64*4 = 256.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Henry Bottomley, Some Smarandache-type multiplicative sequences.
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p^Mod[4 - e, 4]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 08 2020 *)
-
PARI
a(n,f=factor(n))=f[,2]=-f[,2]%4; factorback(f) \\ Charles R Greathouse IV, Apr 24 2020
Formula
Multiplicative with a(p^e) = p^((4 - e) mod 4). - Amiram Eldar, Sep 08 2020
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(16)/(4*zeta(4))) * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^7 + 1/p^8) = 0.1537848996... . - Amiram Eldar, Oct 27 2022