This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056565 #51 May 07 2025 11:17:51 %S A056565 1,21,714,19635,582505,16776144,488605194,14169550626,411591708660, %T A056565 11948265189630,346934172869802,10072785423545712,292460526776698763, %U A056565 8491396839675395415,246543315138161480670,7158243695757340957617,207835653079349665473587 %N A056565 Fibonomial coefficients. %H A056565 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (21,273,-1092,-1820,1092,273,-21,-1). %F A056565 a(n) = A010048(n+7, 7) =: Fibonomial(n+7, 7). %F A056565 G.f.: 1/p(8, n) with p(8, n) = 1 - 21*x - 273*x^2 + 1092*x^3 + 1820*x^4 - 1092*x^5 - 273*x^6 + 21*x^7 + x^8 = (1 + x - x^2) * (1 - 4*x - x^2) * (1 + 11*x - x^2) * (1 - 29*x - x^2) (n=8 row polynomial of signed Fibonomial triangle A055870; see this entry for Knuth and Riordan references). %F A056565 a(n) = 29*a(n-1) + a(n-2) + ((-1)^n) * A001657(n), n >= 2, a(0)=1, a(1)=21. %F A056565 G.f.: exp( Sum_{k>=1} F(8*k)/F(k) * x^k/k ), where F(n) = A000045(n). - _Seiichi Manyama_, May 07 2025 %t A056565 (Times@@@Partition[Fibonacci[Range[30]],7,1])/3120 (* _Harvey P. Dale_, Apr 10 2011 *) %o A056565 (Magma) [ &*[Fibonacci(n+k): k in [0..6]]/3120: n in [1..16] ]; // _Bruno Berselli_, Apr 11 2011 %o A056565 (PARI) b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j)); %o A056565 vector(20, n, b(n-1, 7)) \\ _Joerg Arndt_, May 08 2016 %Y A056565 Cf. A010048, A000045, A001654-8, A001076, A049666 (signed), A049667. %K A056565 nonn,easy %O A056565 0,2 %A A056565 _Wolfdieter Lang_, Jul 10 2000 %E A056565 Offset corrected by _Seiichi Manyama_, May 07 2025