This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056566 #38 May 07 2025 11:17:55 %S A056566 1,34,1870,83215,3994320,186135312,8771626578,411591708660, %T A056566 19344810307020,908637119420910,42689423937884208,2005443612183077232, %U A056566 94214069697350815795,4426039514623184676790,207929935924379904006970,9768275694729434277258589,458901121999204061365680096 %N A056566 Fibonomial coefficients. %H A056566 Vincenzo Librandi, <a href="/A056566/b056566.txt">Table of n, a(n) for n = 0..100</a> %F A056566 a(n) = A010048(n+8, 8) = Fibonomial(n+8, 8). %F A056566 G.f.: 1/p(9, n) with p(9, n)= 1 - 34*x - 714*x^2 + 4641*x^3 + 12376*x^4 - 12376*x^5 - 4641*x^6 + 714*x^7 + 34*x^8 - x^9 = (1-x)*(1 + 3*x + x^2)*(1 - 7*x + x^2)* (1 + 18*x + x^2)*(1 - 47*x + x^2) (n=9 row polynomial of signed Fibonomial triangle A055870; see this entry for Knuth and Riordan references). %F A056566 Recursion: a(n) = 47*a(n-1) - a(n-2) + ((-1)^n)*A001658(n), n >= 2, a(0)=1, a(1)=34. %F A056566 G.f.: exp( Sum_{k>=1} F(9*k)/F(k) * x^k/k ), where F(n) = A000045(n). - _Seiichi Manyama_, May 07 2025 %t A056566 a[n_] := (1/65520) Times @@ Fibonacci[n + Range[8]]; Array[a, 20, 0] (* _Giovanni Resta_, May 08 2016 *) %o A056566 (PARI) b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j)); %o A056566 vector(20, n, b(n-1, 8)) \\ _Joerg Arndt_, May 08 2016 %Y A056566 Cf. A010048, A000045, A001654-8, A056565, A001906 (signed), A004187, A049660 (signed), A049668. %K A056566 nonn,easy %O A056566 0,2 %A A056566 _Wolfdieter Lang_, Jul 10 2000