This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056579 #13 Sep 20 2017 19:26:16 %S A056579 1,15,129,547,1593,3711,7465,13539,22737,35983,54321,78915,111049, %T A056579 152127,203673,267331,344865,438159,549217,680163,833241,1010815, %U A056579 1215369,1449507,1715953,2017551,2357265,2738179,3163497,3636543 %N A056579 1+2n+3n^2+4n^3+5n^4. %H A056579 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A056579 a(n) =(A053700(n+1)-A053700(n-1))/2-10n^2-4n-2. %F A056579 G.f.: -(3*x^4+42*x^3+64*x^2+10*x+1) / (x-1)^5. - _Colin Barker_, May 04 2013 %e A056579 For n>5 this is 54321 translated from base n to base 10 %t A056579 Join[{1},Table[Total[Table[i n^(i-1),{i,5}]],{n,30}]] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,15,129,547,1593},30] (* _Harvey P. Dale_, Sep 20 2017 *) %o A056579 (PARI) a(n)=1+2*n+3*n^2+4*n^3+5*n^4 \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A056579 Note: 1+2x+3x^2+4x^3+5x^4 is derivative of 1+x+x^2+x^3+x^4 +x^5, i.e. A053700. Cf. A000012, A005408, A056109, A056578. %K A056579 easy,nonn %O A056579 0,2 %A A056579 _Henry Bottomley_, Jun 29 2000