A056582 Highest common factor (or GCD) of n^n and hyperfactorial(n-1), i.e., gcd(n^n, product(k^k) for k < n).
1, 1, 4, 1, 1728, 1, 65536, 19683, 3200000, 1, 8916100448256, 1, 13492928512, 437893890380859375, 18446744073709551616, 1, 39346408075296537575424, 1, 104857600000000000000000000
Offset: 2
Examples
a(6) = gcd(46656, 86400000) = 1728.
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..200
- Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics 36(2), 2007, pp. 251-257. MR2312537. Zbl 1133.11012.
Programs
-
Python
from gmpy2 import gcd A056582_list, n = [], 1 for i in range(2,201): m = i**i A056582_list.append(int(gcd(n,m))) n *= m # Chai Wah Wu, Aug 21 2015
Comments