This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056588 #40 Jan 05 2025 19:51:36 %S A056588 1,1,-1,1,-2,-1,1,-4,-4,1,1,-7,-16,7,1,1,-12,-53,53,12,-1,1,-20,-166, %T A056588 318,166,-20,-1,1,-33,-492,1784,1784,-492,-33,1,1,-54,-1413,9288, %U A056588 17840,-9288,-1413,54,1,1,-88,-3960,46233,163504,-163504,-46233,3960,88,-1 %N A056588 Coefficient triangle of certain polynomials. %C A056588 G.f. for column m: see column sequences: A000012, A000071, A056589-91, for m=0..4. %C A056588 The row polynomials p(n,x) := sum(a(n,m)*x^m) occur as numerators of the g.f. for the (n+1)-th power of Fibonacci numbers A000045. The corresponding denominator polynomials are the row polynomials q(n+2,x) = Sum_{m=0..n+2} A055870(n+2, m)*x^m (signed Fibonomial triangle). %C A056588 The row polynomials p(n,x) and the companion denominator polynomials q(n,x) can be deduced from Riordan's recursion result. %C A056588 The explicit formula is found from the recursion relation for powers of Fibonacci numbers (see Knuth's exercise with solution). - _Roger L. Bagula_, Apr 03 2010 %D A056588 D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 84, (exercise 1.2.8. Nr. 30) and p. 492 (solution). %H A056588 A. Brousseau, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/6-1/brousseau3.pdf">A sequence of power formulas</a>, Fib. Quart., 6 (1968), 81-83. %H A056588 S. Falcon, <a href="http://saspublisher.com/wp-content/uploads/2014/06/SJET24C669-675.pdf">On The Generating Functions of the Powers of the K-Fibonacci Numbers</a>, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675. %H A056588 J. Riordan, <a href="http://dx.doi.org/10.1215/S0012-7094-62-02902-2">Generating functions for powers of Fibonacci numbers</a>, Duke. Math. J. 29 (1962) 5-12. %F A056588 a(n, m)=0 if n<m; a(n, 0)=1; a(n, m) = F(m+1)^(n+1) + sum(sfibonomial(n+2, j)*(F(m+1-j)^(n+1)), j=1..m) m=1..n, with F(n)=A000045(n) (Fibonacci) and sfibonomial(n, m) := A055870(n, m). %F A056588 From _Roger L. Bagula_, Apr 03 2010: (Start) %F A056588 p(x,n) = Sum_{k>=0} (((1 + sqrt(5))^k - (1 - sqrt(5))^k)/(2^k*sqrt(5)))^n*x^k; %F A056588 t(n,m) = Numerator_coefficients(p(x,n)/x)/2^(1 + floor(n/2)); %F A056588 out(n,m) = t(n,m)/t(n,1). (End) %F A056588 T(n, k) = Sum_{j=0..k} Fibonacci(k+1-j)^(n+1) * A055870(n+2, j). - _Tony Foster III_, Aug 20 2018 %F A056588 Sum_{j=0..n-1} a(n-1, n-1-j)*A010048(k+j, n) = Fibonacci(k)^n. - _Tony Foster III_, Jul 24 2018 %e A056588 Row polynomial for n=4: p(4,x) = 1 - 7*x - 16*x^2 + 7*x^3 + x^4. x*p(4,x) is the numerator of the g.f. for A056572(n), n >= 0 (fifth power of Fibonacci numbers) {0,1,1,32,243,...}. The denominator polynomial is Sum_{m=0..6} A055870(6,m)*x^m (n=6 row polynomial of signed fibonomial triangle). %e A056588 From _Roger L. Bagula_, Apr 03 2010: (Start) %e A056588 1; %e A056588 1, -1; %e A056588 1, -2, -1; %e A056588 1, -4, -4, 1; %e A056588 1, -7, -16, 7, 1; %e A056588 1, -12, -53, 53, 12, -1; %e A056588 1, -20, -166, 318, 166, -20, -1; %e A056588 1, -33, -492, 1784, 1784, -492, -33, 1; %e A056588 1, -54, -1413, 9288, 17840, -9288, -1413, 54, 1; %e A056588 1, -88, -3960, 46233, 163504, -163504, -46233, 3960, 88, -1; (End) %p A056588 A056588 := proc(n,k) %p A056588 if k = 0 then %p A056588 1; %p A056588 elif k >n then %p A056588 0; %p A056588 else %p A056588 combinat[fibonacci](k+1)^(n+1)+add( A055870(n+2, j)*(combinat[fibonacci](k+1-j)^(n+1)), j=1..k) ; %p A056588 end if; %p A056588 end proc: # _R. J. Mathar_, Jun 14 2015 %t A056588 p[x_, n_] = Sum[(((1 + Sqrt[5])^k - (1 - Sqrt[5])^k)/(2^k*Sqrt[5]))^n*x^k, {k, 0, Infinity}]; %t A056588 a = Table[CoefficientList[FullSimplify[Numerator[p[ x, n]]/x], x]/2^(1 + Floor[n/2]), {n, 1, 10}]; %t A056588 Table[a[[n]]/a[[n]][[1]], {n, 1, 10}]; %t A056588 Flatten[%] (* _Roger L. Bagula_, Apr 03 2010 *) %o A056588 (PARI) S(n, k) = (-1)^floor((k+1)/2)*(prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j))); %o A056588 T(n, k) = sum(j=0, k, fibonacci(k+1-j)^(n+1) * S(n+2, j)); %o A056588 tabl(m) = for (n=0, m, for (k=0, n, print1(T(n, k), ", ")); print); %o A056588 tabl(9); \\ _Tony Foster III_, Aug 20 2018 %Y A056588 Cf. A055870, A000012, A000071, A056589-91, A056592 (row sums), A000045, A007598, A056570-4, A056585-7. %K A056588 easy,sign,tabl %O A056588 0,5 %A A056588 _Wolfdieter Lang_, Jul 10 2000