A056670 Largest non-unitary prime factor of A001405(n) = binomial(n, floor(n/2)), or 1 if no such prime exists.
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 2, 2, 2, 3, 3, 1, 2, 1, 2, 2, 2, 1, 2, 5, 5, 5, 5, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 3, 3, 2, 2, 2, 2, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 2, 2, 2, 2, 2, 2, 2, 2, 7, 7, 7, 7, 7, 7, 3, 3, 1, 2, 2, 2, 5, 5, 7, 7, 7, 7, 7, 7, 3, 3, 5, 5, 5, 5, 3, 3, 7, 7, 7, 7, 7, 7, 5, 5, 3, 3, 3, 3, 3, 3, 3
Offset: 1
Keywords
Examples
For n = 28: binomial(28,14) = 2*2*2*3*3*3*5*5*17*19*23, so a(28) = 5. For n = 342: binomial(342,171) = 32*F, where F is squarefree, so a(341) = 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := Module[{f = Select[FactorInteger[Binomial[n, Floor[n/2]]], Last[#] > 1 &]}, If[f == {}, 1, f[[-1, 1]]]]; Array[a, 100] (* Amiram Eldar, Oct 05 2024 *)
Comments