cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056672 Number of unitary and squarefree divisors of n! Also, number of divisors of the special squarefree part of n!, A055773(n).

This page as a plain text file.
%I A056672 #18 Jun 03 2023 23:56:33
%S A056672 1,2,4,2,4,2,4,4,4,2,4,4,8,4,4,4,8,8,16,16,16,8,16,16,16,8,8,8,16,16,
%T A056672 32,32,32,16,16,16,32,16,16,16,32,32,64,64,64,32,64,64,64,64,64,64,
%U A056672 128,128,128,128,128,64,128,128,256,128,128,128,128,128,256,256,256,256
%N A056672 Number of unitary and squarefree divisors of n! Also, number of divisors of the special squarefree part of n!, A055773(n).
%C A056672 The divisor d=1 is counted here as being free of prime divisors and also unitary.
%H A056672 Amiram Eldar, <a href="/A056672/b056672.txt">Table of n, a(n) for n = 1..10000</a>
%F A056672 a(n) = A000005(A055231(n!)).
%F A056672 a(n) = A000005(A007913(n!)/A055229(n!)).
%F A056672 a(n) = A000005(A055773(n)).
%F A056672 a(n) = 2^A056171(n). - _Kevin Ryde_, Jun 03 2023
%e A056672 n=11: 11! = 2*2*2*2*2*2*2*2*3*3*3*3*5*5*7*11, has 540 divisors, 32 are unitary and 32 are squarefree. Only 4 divisors, {1,7,11,77} have both properties, so a(11)=4.
%t A056672 rad[n_] := Times @@ First /@ FactorInteger[n]; p[n_] := Denominator[n/rad[n]^2]; a[n_] := DivisorSigma[0, p[n!]]; Array[a, 70] (* _Amiram Eldar_, Sep 22 2019 *)
%o A056672 (PARI) a(n) = my(f=n!); sumdiv(f, d, issquarefree(d) && (gcd(d, f/d) == 1)); \\ _Michel Marcus_, Sep 05 2017
%o A056672 (PARI) a(n) = 1 << (primepi(n) - primepi(n>>1)); \\ _Kevin Ryde_, Jun 03 2023
%Y A056672 Cf. A000005, A000142, A007913, A055229, A055231, A055773, A056171.
%K A056672 nonn,easy
%O A056672 1,2
%A A056672 _Labos Elemer_, Aug 10 2000