cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056674 Number of squarefree divisors which are not unitary. Also number of unitary divisors which are not squarefree.

This page as a plain text file.
%I A056674 #31 Jul 24 2024 09:20:52
%S A056674 0,0,0,1,0,0,0,1,1,0,0,2,0,0,0,1,0,2,0,2,0,0,0,2,1,0,1,2,0,0,0,1,0,0,
%T A056674 0,3,0,0,0,2,0,0,0,2,2,0,0,2,1,2,0,2,0,2,0,2,0,0,0,4,0,0,2,1,0,0,0,2,
%U A056674 0,0,0,3,0,0,2,2,0,0,0,2,1,0,0,4,0,0,0,2,0,4,0,2,0,0,0,2,0,2,2,3,0,0,0,2,0
%N A056674 Number of squarefree divisors which are not unitary. Also number of unitary divisors which are not squarefree.
%C A056674 Numbers of unitary and of squarefree divisors are identical, although the 2 sets are usually different, so sizes of parts outside overlap are also equal to each other.
%H A056674 Antti Karttunen, <a href="/A056674/b056674.txt">Table of n, a(n) for n = 1..10000</a>
%H A056674 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F A056674 a(n) = A034444(n) - A056671(n) = A034444(n) - A000005(A055231(n)) = A034444(n) - A000005(A007913(n)/A055229(n)).
%e A056674 For n = 252, it has 18 divisors, 8 are unitary, 8 are squarefree, 2 belong to both classes, so 6 are squarefree but not unitary, thus a(252) = 6. The set {2,3,14,21,42} forms squarefree but non-unitary while the set {4,9,36,28,63,252} of same size gives the set of not squarefree but unitary divisors.
%t A056674 Table[DivisorSum[n, 1 &, And[SquareFreeQ@ #, ! CoprimeQ[#, n/#]] &], {n, 105}] (* _Michael De Vlieger_, Jul 19 2017 *)
%t A056674 f[p_, e_] := If[e == 1, 2, 1]; a[1] = 0; a[n_] := 2^Length[fct = FactorInteger[n]] - Times @@ (f @@@ fct); Array[a, 100] (* _Amiram Eldar_, Jul 24 2024 *)
%o A056674 (PARI)
%o A056674 A034444(n) = (2^omega(n));
%o A056674 A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); } \\ _Charles R Greathouse IV_, Aug 13 2013
%o A056674 A055231(n) = n/A057521(n);
%o A056674 A056674(n) = (A034444(n) - numdiv(A055231(n)));
%o A056674 \\ Or:
%o A056674 A055229(n) = { my(c=core(n)); gcd(c, n/c); }; \\ _Charles R Greathouse IV_, Nov 20 2012
%o A056674 A056674(n) = ((2^omega(n)) - numdiv(core(n)/A055229(n)));
%o A056674 \\ _Antti Karttunen_, Jul 19 2017
%o A056674 (PARI) a(n) = {my(f = factor(n), e = f[,2]); 2^omega(f) - prod(i = 1, #e, if(e[i] == 1, 2, 1));} \\ _Amiram Eldar_, Jul 24 2024
%o A056674 (Python)
%o A056674 from sympy import gcd, primefactors, divisor_count
%o A056674 from sympy.ntheory.factor_ import core
%o A056674 def a055229(n):
%o A056674     c=core(n)
%o A056674     return gcd(c, n//c)
%o A056674 def a056674(n): return 2**len(primefactors(n)) - divisor_count(core(n)//a055229(n))
%o A056674 print([a056674(n) for n in range(1, 101)]) # _Indranil Ghosh_, Jul 19 2017
%Y A056674 Cf. A000005, A007913, A034444, A055229, A055231, A056671.
%K A056674 nonn,easy
%O A056674 1,12
%A A056674 _Labos Elemer_, Aug 10 2000