cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056694 Numbers k such that 80*R_k + 3 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

This page as a plain text file.
%I A056694 #26 Sep 08 2022 08:45:01
%S A056694 0,1,2,4,7,8,14,50,70,76,223,295,314,2089,2905,3394,3881,5113,6055,
%T A056694 7253,7994,18172,18970,35005,69673
%N A056694 Numbers k such that 80*R_k + 3 is prime, where R_k = 11...1 is the repunit (A002275) of length k.
%C A056694 Also numbers k such that (8*10^(k+1)-53)/9 is prime.
%C A056694 a(26) > 10^5. - _Robert Price_, Oct 31 2014
%H A056694 Makoto Kamada, <a href="https://stdkmd.net/nrr/8/88883.htm#prime">Prime numbers of the form 88...883</a>.
%H A056694 <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>
%F A056694 a(n) = A099422(n) - 1. [adapted by _Georg Fischer_, Jan 04 2021]
%t A056694 Do[ If[ PrimeQ[80*(10^n - 1)/9 + 3], Print[n]], {n, 0, 5000}]
%o A056694 (Magma) [n: n in [0..500] | IsPrime((8*10^(n+1)-53) div 9)]; // _Vincenzo Librandi_, Nov 01 2014
%Y A056694 Cf. A002275, A093166, A099422.
%K A056694 hard,nonn
%O A056694 1,3
%A A056694 _Robert G. Wilson v_, Aug 10 2000
%E A056694 More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
%E A056694 a(22)-a(25) from _Robert Price_, Oct 31 2014