This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056729 #21 Jan 15 2015 08:12:12 %S A056729 8,27,32,63,125,128,243,275,343,399,512,567,575,935,1127,1331,1539, %T A056729 2015,2048,2187,2197,2303,2783,2915,3087,3125,4563,4913,4991,5103, %U A056729 5719,5831,6399,6859,6875,6929,7055,7139,7625,8192,8855,12167,12719,14027 %N A056729 If p | n, then p+1 | n+1 for composite n. %C A056729 The Lucas-Carmichael numbers (A006972) are a subset. %C A056729 Contains p^(2k+1) for any prime p, since (x+1) | (x^n + 1) when n is odd. %C A056729 The only even numbers in this sequence are the composite odd powers of 2. [_Emmanuel Vantieghem_, Jul 08 2013] %C A056729 If you try to extend this idea to the divisors, the only integer which is satisfied is 1. %C A056729 Extension to prime power divisors is possible. [_Emmanuel Vantieghem_, Jul 08 2013] %H A056729 Donovan Johnson, <a href="/A056729/b056729.txt">Table of n, a(n) for n = 1..10000</a> %t A056729 fQ[n_] := !PrimeQ[n] && Union[ Mod[ n + 1, Transpose[ FactorInteger[n]][[1]] + 1]] == {0}; Select[ Range[20000], fQ[#] &] %o A056729 (PARI) is(n)=my(f=factor(n)[,1]);for(i=1,#f,if((n+1)%(f[i]+1), return(0))); !isprime(n) \\ _Charles R Greathouse IV_, Jan 15 2015 %Y A056729 Cf. A006972. %K A056729 nonn %O A056729 1,1 %A A056729 _Robert G. Wilson v_, Aug 31 2000