cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056730 Palindromic primes with just two distinct digits.

Original entry on oeis.org

101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 11311, 11411, 13331, 15551, 16661, 18181, 19991, 32323, 33533, 35353, 72227, 72727, 74747, 75557, 76667, 77377, 77477, 77977, 78787, 78887, 79997, 94949, 95959
Offset: 1

Views

Author

Robert G. Wilson v, Aug 11 2000

Keywords

Crossrefs

Intersection of A002385 and A031955.

Programs

  • Maple
    f:= proc(d) local d1,d2,L,cand,C1,C2,C3,a,b,n,Cands;
        Cands:= NULL;
        d1:= (d+1)/2;
        d2:= d-d1;
        for b in [1,3,7,9] do
          for a in {$0..9} minus {b} do
            for n from 2^(d1-1) to 2^d1-2 do
              L:= convert(n,base,2);
              C1:= a*(10^d-1)/9;
              C2:= (b-a)*add(L[i]*10^(i+d2-1),i=1..d1);
              C3:= (b-a)*add(L[i]*10^(d1-i),i=2..d1);
              cand:= C1+C2+C3;
              if isprime(cand) then Cands:= Cands, cand; fi
        od od od;
        sort([Cands])
    end proc:
    map(op, [seq(f(d),d=3..7,2)]); # Robert Israel, Sep 09 2018
  • Mathematica
    Select[ Range[ 1, 3 10^6, 2 ], PrimeQ[ # ] && Length[ Union[ RealDigits[ # ][ [ 1 ] ] ] ] == 2 && RealDigits[ # ][ [ 1 ] ] == Reverse[ RealDigits[ # ][ [ 1 ] ] ] & ]