A056730 Palindromic primes with just two distinct digits.
101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 11311, 11411, 13331, 15551, 16661, 18181, 19991, 32323, 33533, 35353, 72227, 72727, 74747, 75557, 76667, 77377, 77477, 77977, 78787, 78887, 79997, 94949, 95959
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(d) local d1,d2,L,cand,C1,C2,C3,a,b,n,Cands; Cands:= NULL; d1:= (d+1)/2; d2:= d-d1; for b in [1,3,7,9] do for a in {$0..9} minus {b} do for n from 2^(d1-1) to 2^d1-2 do L:= convert(n,base,2); C1:= a*(10^d-1)/9; C2:= (b-a)*add(L[i]*10^(i+d2-1),i=1..d1); C3:= (b-a)*add(L[i]*10^(d1-i),i=2..d1); cand:= C1+C2+C3; if isprime(cand) then Cands:= Cands, cand; fi od od od; sort([Cands]) end proc: map(op, [seq(f(d),d=3..7,2)]); # Robert Israel, Sep 09 2018
-
Mathematica
Select[ Range[ 1, 3 10^6, 2 ], PrimeQ[ # ] && Length[ Union[ RealDigits[ # ][ [ 1 ] ] ] ] == 2 && RealDigits[ # ][ [ 1 ] ] == Reverse[ RealDigits[ # ][ [ 1 ] ] ] & ]