This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056737 #50 Aug 11 2025 01:45:53 %S A056737 0,1,2,0,4,1,6,2,0,3,10,1,12,5,2,0,16,3,18,1,4,9,22,2,0,11,6,3,28,1, %T A056737 30,4,8,15,2,0,36,17,10,3,40,1,42,7,4,21,46,2,0,5,14,9,52,3,6,1,16,27, %U A056737 58,4,60,29,2,0,8,5,66,13,20,3,70,1,72,35,10,15,4 %N A056737 Minimum nonnegative integer m such that n = k*(k+m) for some positive integer k. %C A056737 a(n) is difference between the least divisor of n that is >= square root(n) and the greatest divisor of n that is <= square root(n). %C A056737 From _Omar E. Pol_, Aug 12 2009: (Start) %C A056737 a(n) = 0 iff n is a square. %C A056737 a(n) = n-1 is a new record iff n is a prime number. (End) %C A056737 For odd n = 2k-1, a(n) = 2*A219695(k) is even. - _M. F. Hasler_, Nov 25 2012 %C A056737 Conjecture: There exists some constant, k, approximately equal to 1.7, such that a(n) is of average order k*n/log(n). See Tooth Link for evidence. - _Clive Tooth_, Mar 18 2025 %H A056737 T. D. Noe, <a href="/A056737/b056737.txt">Table of n, a(n) for n = 1..1000</a> %H A056737 Clive Tooth, <a href="/A056737/a056737_1.png">[Sum_{i=2..n} a(i)]/[Sum_{i=2..n} i/log(i)] for n=10^6 to 10^8</a> %F A056737 a(n) = Min_{t - d | 0 < d <= t <= n and d*t=n}. - _Reinhard Zumkeller_, Feb 25 2002 %F A056737 a(n) = A033677(n)-A033676(n). - _Omar E. Pol_, Jun 21 2009 %F A056737 a(2n-1) = 2*A219695(n). - _M. F. Hasler_, Nov 25 2012 %e A056737 a(8) = 2 because 8 = 2*(2+2) and 8 = k*(k+1) or 8 = k^2 have no solutions for k = a positive integer. %t A056737 A033676[n_] := If[EvenQ[DivisorSigma[0, n]], Divisors[n][[DivisorSigma[0, n]/2]], Sqrt[n]]; A033677[n_] := If[EvenQ[DivisorSigma[0, n]], Divisors[n][[DivisorSigma[0, n]/2+1]], Sqrt[n]]; Table[A033677[n] - A033676[n], {n, 1, 77}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 27 2004 *) %t A056737 Table[d = Divisors[n]; len = Length[d]; If[OddQ[len], 0, d[[1 + len/2]] - d[[len/2]]], {n, 100}] (* _T. D. Noe_, Jun 04 2012 *) %o A056737 (PARI) A056737(n)={n=divisors(n);n[(2+#n)\2]-n[(1+#n)\2]} \\ _M. F. Hasler_, Nov 25 2012 %Y A056737 Cf. A033676, A033677. %Y A056737 Cf. A000040, A000290, A147861, A163100, A163280. %K A056737 nonn %O A056737 1,3 %A A056737 _Leroy Quet_, Aug 26 2000