A056770 Smallest number that is n times the product of its digits or 0 if impossible.
1, 36, 15, 384, 175, 12, 735, 128, 135, 0, 11, 1296, 624, 224, 0, 0, 816, 216, 1197, 0, 315, 132, 115, 0, 0, 0, 2916, 1176, 3915, 0, 93744, 0, 51975, 78962688, 0, 82944, 1184, 0, 0, 0, 31488, 0, 0, 77616, 77175, 4416, 0, 12288, 1715, 0, 612
Offset: 1
Examples
a(4) = 384 because 4*(product of digits of 384) = 4*96 = 384, and no number smaller than 384 has this property.
Links
- David W. Wilson, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Do[k = n; If[Mod[n, 10] == 0, Print[0]; Continue[]]; While[Apply[Times, RealDigits[k][[1]]]*n != k, k += n]; Print[k], {n, 1, 14}]
-
Python
from itertools import count, combinations_with_replacement from math import prod def A056770(n): if not n%10: return 0 for l in count(1): if 9**l*n < 10**(l-1): return 0 c = 10**l for d in combinations_with_replacement(range(1,10),l): if sorted(str(a:=prod(d)*n)) == list(str(e) for e in d): c = min(c,a) if c < 10**l: return c # Chai Wah Wu, May 09 2023
Extensions
a(15) onwards from David W. Wilson, Jan 20 2016