This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056797 #52 Apr 24 2024 19:37:39 %S A056797 3,4,5,9,22,27,36,57,62,78,201,537,696,790,905,1038,66886,70500,91836, %T A056797 100613,127240,380734,583696,719055,823037,862868 %N A056797 Numbers k such that 9*10^k+1 is prime. %C A056797 a(22) > 2*10^5. - _Robert Price_, Jan 21 2015 %H A056797 Makoto Kamada, <a href="https://stdkmd.net/nrr/9/90001.htm#prime">Prime numbers of the form 900...001</a>. %H A056797 Sabin Tabirca and Kieran Reynolds, <a href="http://multimedia.ucc.ie/Staff/ST/articles/SNJ03_Tabirca1.ps">Lacunary Prime Numbers</a>. %H A056797 <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>. %F A056797 a(n) = A100997(n) + 1. %e A056797 For k=9 we have (9*(10^9))+1 = 9000000001, which is prime. %t A056797 Do[ If[ PrimeQ[9*10^n + 1], Print[n]], {n, 0, 10000}] %o A056797 (Magma) [n: n in [0..1000] | IsPrime(9*10^n+1)]; // _Vincenzo Librandi_, May 25 2015 %o A056797 (PARI) is(n)=ispseudoprime(9*10^n+1) \\ _Charles R Greathouse IV_, Feb 17 2017 %Y A056797 Cf. A056806 (4*10^k+1 is prime), A100997. %K A056797 more,nonn %O A056797 1,1 %A A056797 _Robert G. Wilson v_, Aug 22 2005 %E A056797 a(18)-a(19) from Kamada data by _Robert Price_, Dec 14 2010 %E A056797 a(20) from _Predrag Kurtovic_, Sep 23 2013 %E A056797 a(21) from _Robert Price_, Jan 21 2015 %E A056797 a(22)-a(23) from Kamada data by _Mohammed Yaseen_, Jul 20 2021 %E A056797 a(24) from _Predrag Kurtovic_, Apr 18 2024 %E A056797 a(25)-a(26) from _Predrag Kurtovic_, Apr 22 2024