This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056798 #54 Aug 14 2024 01:55:28 %S A056798 1,4,9,16,25,49,64,81,121,169,256,289,361,529,625,729,841,961,1024, %T A056798 1369,1681,1849,2209,2401,2809,3481,3721,4096,4489,5041,5329,6241, %U A056798 6561,6889,7921,9409,10201,10609,11449,11881,12769,14641,15625,16129,16384 %N A056798 Prime powers with even nonnegative exponents. %C A056798 Also numbers whose geometric mean of divisors is an integer. - _Ctibor O. Zizka_, Sep 29 2008 %C A056798 This is just a special case. In fact, the numbers whose geometric mean of divisors is an integer are all the squares of integers (A000290). - _Daniel Lignon_, Nov 29 2014 %H A056798 T. D. Noe, <a href="/A056798/b056798.txt">Table of n, a(n) for n = 1..10000</a> %F A056798 a(n) = A025473(n)^(2*A025474(n)) = A000961(n)^2; %F A056798 A001222(a(n)) mod 2 = 0; %F A056798 A003415(a(n)) = A192083(n); A068346(a(n)) = A192084(n). - _Reinhard Zumkeller_, Jun 26 2011 %F A056798 Sum_{n>=2} 1/a(n) = A154945. - _Amiram Eldar_, Sep 21 2020 %t A056798 Take[Union[Flatten[Table[Prime[n]^k, {n, 31}, {k, 0, 14, 2}]]], 45] (* _Alonso del Arte_, Jul 05 2011 *) %o A056798 (PARI) is(n)=my(e=isprimepower(n)); if(e, e%2==0, n==1) \\ _Charles R Greathouse IV_, Sep 18 2015 %o A056798 (Python) %o A056798 from sympy import primepi, integer_nthroot %o A056798 def A056798(n): %o A056798 if n==1: return 1 %o A056798 def f(x): return int(n-2+x-sum(primepi(integer_nthroot(x,k)[0])for k in range(2,x.bit_length(),2))) %o A056798 kmin, kmax = 1,2 %o A056798 while f(kmax) >= kmax: %o A056798 kmax <<= 1 %o A056798 while True: %o A056798 kmid = kmax+kmin>>1 %o A056798 if f(kmid) < kmid: %o A056798 kmax = kmid %o A056798 else: %o A056798 kmin = kmid %o A056798 if kmax-kmin <= 1: %o A056798 break %o A056798 return kmax # _Chai Wah Wu_, Aug 13 2024 %Y A056798 Cf. A000290, A000961, A025475, A154945. %K A056798 nonn %O A056798 1,2 %A A056798 _Labos Elemer_, Aug 28 2000