This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056813 #22 Oct 30 2013 00:08:02 %S A056813 1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5, %T A056813 5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, %U A056813 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 %N A056813 Largest non-unitary prime factor of LCM(1,...,n); that is, the largest prime which occurs to power > 1 in prime factorization of LCM(1,..,n). %C A056813 For n>0, prime(n) appears {(prime(n+1))^2 - (prime(n))^2} times [from n=(prime(n))^2 to n=(prime(n+1))^2 - 1], that is, A000040(n) appears A069482(n) times (from n=A001248(n) to n=A084920(n+1)). - _Lekraj Beedassy_, Mar 31 2005 %C A056813 a(n) is the largest prime factor of A045948(n). [_Matthew Vandermast_, Oct 29 2008] %C A056813 Alternative definition: a(n) = largest prime <= sqrt(n) (considering 1 as prime for this occasion, see A008578 for the 19th century definition of primes). - _Jean-Christophe Hervé_, Oct 29 2013 %H A056813 Jean-Christophe Hervé, <a href="/A056813/b056813.txt">Table of n, a(n) for n = 1..10000</a> %F A056813 a(n) = prime(w) if prime(w)^2 <= n < prime(w+1)^2. %F A056813 To get the sequence, repeat 1 three times, and then for any k >= 1, repeat A000040(k) A069482(k) times; or equivalently, for any k >= 1, repeat A008578(k) a number of times equal to A008578(k+1)^2 - A008578(k)^2. - _Jean-Christophe Hervé_, Oct 29 2013 %e A056813 The j-th prime appears at the position of its square, at n = prime(j)^2. %t A056813 Table[f = Transpose[FactorInteger[LCM @@ Range[n]]]; pos = Position[f[[2]], _?(# > 1 &)]; If[pos == {}, 1, f[[1, pos[[-1]]]][[1]]], {n, 100}] (* _T. D. Noe_, Oct 30 2013 *) %Y A056813 Cf. A054041, A056170. %Y A056813 Cf. A000040, A001248, A008578, A069482. %K A056813 nonn,easy %O A056813 1,4 %A A056813 _Labos Elemer_, Aug 28 2000 %E A056813 Corrected offset by _Jean-Christophe Hervé_, Oct 29 2013