A056850 Minimal absolute difference of 3^n and 2^k.
0, 1, 1, 5, 17, 13, 217, 139, 1631, 3299, 6487, 46075, 7153, 502829, 588665, 2428309, 9492289, 5077565, 118985033, 88519643, 808182895, 1870418611, 2978678759, 25423702091, 7551629537, 252223018333, 342842572777, 1170495537221, 5284606410545, 1738366812781
Offset: 0
Keywords
Examples
For n = 4, the closest power of 2 to 3^n = 81 is 2^6 = 64, so a(4) = |3^4 - 2^6| = |81 - 64| = 17. - _Jon E. Schoenfield_, Sep 30 2017
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..2097
- R. Tijdeman, On integers with many small prime factors, Compos. Math. 26 (1973), 319--330.
Programs
-
Mathematica
Table[Min[# - 2^Floor@ Log2@ # &[3^n], 2^Ceiling@ Log2@ # - # &[3^n]], {n, 0, 27}]
Extensions
a(28)-a(29) from Jon E. Schoenfield, Mar 31 2021
Comments