cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056856 Triangle of numbers related to rooted trees and unrooted planar trees.

This page as a plain text file.
%I A056856 #31 Mar 31 2023 17:33:49
%S A056856 1,1,2,2,9,9,6,44,96,64,24,250,875,1250,625,120,1644,8100,18360,19440,
%T A056856 7776,720,12348,79576,252105,420175,352947,117649,5040,104544,840448,
%U A056856 3465728,8028160,10551296,7340032,2097152
%N A056856 Triangle of numbers related to rooted trees and unrooted planar trees.
%C A056856 The rows sum to A006963: (2*n - 1)!/n!.
%C A056856 The main diagonal is A000169: n^(n-1).
%C A056856 The left column is A000142: (n - 1)!.
%C A056856 The alternating sum in row n is (-1)^(n-1)*(n - 1)!
%C A056856 If Y := X * (1 - X)^(z-1), then (1 - z*X)^(-1) = 1 + Sum_{n>=1} Y^n/(n-1)! * (Sum_{k=1..n} (-1)^(n-k) * z^k * T(n, k)). Note that if Y = y^(z-1) and X = x^(z-1) then y = x - x^z, dy/dx = 1 - z*x^(z-1) = 1 - z*X, and dx/dy = (1 - z*X)^(-1). Also x = y + x^z = y + y^z + z*y^(2*z-1) + ... = y * (1 + Sum_{n>=1} Y^n/(n-1)! * (1+(z-1)*n)^(-1) * (Sum_{k=1..n} (-1)^(n-k) * z^k * T(n, k))). - _Michael Somos_, Aug 01 2019
%D A056856 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998.
%F A056856 Formula for row n: Sum_{k = 0..n-1} T(n,k)*y^k = Product_{k = 1..n-1} (k + n*y)
%F A056856 E.g.f.: A(x,t) = Sum_{n >= 1} 1/(n*t)*binomial(n*t + n - 1, n)*x^n = log(B_(t+1)(x)), where B_t(x) = Sum_{n >= 0} 1/(n*t + 1)*binomial(n*t + 1, n)*x^n is Lambert's generalized binomial series - see Graham et al., Section 5.4. - _Peter Bala_, Nov 08 2015
%F A056856 T(n,m) = n^(m-1)*binomial(n-1,m-1)*Sum_{k=0..n-m} ((-1)^(n-m-k)*binomial(n+k-1,k)*stirling2(n-m+k,k)*binomial(2*n-m,n-m-k))/binomial(n-m+k,k). - _Vladimir Kruchinin_, Apr 05 2016
%F A056856 Conjecture: T(n,k) = A130534(n,k)* n^(k-1). - _R. J. Mathar_, Mar 31 2023
%e A056856 Triangle begins:
%e A056856 {1},
%e A056856 {1, 2},
%e A056856 {2, 9, 9},
%e A056856 {6, 44, 96, 64},
%e A056856 {24, 250, 875, 1250, 625},
%e A056856 ...
%p A056856 seq(seq(coeff(product(n*x + k, k = 1..n-1), x, i), i = 0..n-1), n = 1..8); # _Peter Bala_, Nov 08 2015
%t A056856 T[n_, m_] := (n^(m-1)*Binomial[n-1, m-1]*Sum[((-1)^(n-m-k)*Binomial[n+k-1, k]*StirlingS2[n-m+k, k]*Binomial[2*n-m, n-m-k])/Binomial[n-m+k, k], {k, 0, n-m}]); Table[T[n, m], {n, 1, 8}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 23 2017, after Vladimir Kruchinin *)
%t A056856 T[ n_, k_] := If[ n < 1 || k < 1, 0, Coefficient[ (-1)^(n - k) Binomial[n z, n] (n - 1)!, z, k]]; (* _Michael Somos_, Aug 01 2019 *)
%o A056856 (Maxima)
%o A056856 T(n,m):=(n^(m-1)*binomial(n-1,m-1)*sum(((-1)^(n-m-k)*binomial(n+k-1,k)*stirling2(n-m+k,k)*binomial(2*n-m,n-m-k))/binomial(n-m+k,k),k,0,n-m)); /* _Vladimir Kruchinin_, Apr 05 2016 */
%o A056856 (PARI) {T(n, k) = if( n < 1 || k < 1, 0, polcoeff( (-1)^(n-k) * binomial(n*x, n)*(n-1)!, k))}; /* _Michael Somos_, Aug 01 2019 */
%Y A056856 Cf. A006963, A000142, A000169, A203904.
%K A056856 nonn,tabl,easy
%O A056856 1,3
%A A056856 _F. Chapoton_, Aug 31 2000
%E A056856 a(29)-a(36) from _Peter Bala_, Nov 08 2015