cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056858 Triangle of number of rises in restricted growth strings (RGS) for the set partitions of n.

This page as a plain text file.
%I A056858 #22 May 23 2016 02:46:08
%S A056858 1,1,1,1,3,1,1,6,7,1,1,10,26,14,1,1,15,71,89,26,1,1,21,161,380,267,46,
%T A056858 1,1,28,322,1268,1709,732,79,1,1,36,588,3571,8136,6794,1887,133,1,1,
%U A056858 45,1002,8878,31532,44924,24717,4654,221,1,1,55,1617,20053,104927,234412,221857,84170,11113,364,1
%N A056858 Triangle of number of rises in restricted growth strings (RGS) for the set partitions of n.
%C A056858 Number of rises s_{i+1} > s_i in the RGS [s_1, ..., s_n] for a set partition of {1, ..., n}, where s_i is the index of the subset containing i, s_1 = 1 and s_i <= 1 + max_{j<i} s_j.
%D A056858 W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [apparently unpublished, _Joerg Arndt_, Mar 05 2016]
%H A056858 Alois P. Heinz, <a href="/A056858/b056858.txt">Rows n = 1..100, flattened</a>
%e A056858 For example [1, 2, 1, 2, 2, 3] is the RGS for a set partition of {1, 2, 3, 4, 5, 6} and has 3 rises, at i = 1, i = 3 and i = 5.
%e A056858 1;
%e A056858 1,1;
%e A056858 1,3,1;
%e A056858 1,6,7,1;
%e A056858 1,10,26,14,1;
%e A056858 1,15,71,89,26,1;
%e A056858 1,21,161,380,267,46,1;
%e A056858 1,28,322,1268,1709,732,79,1;
%e A056858 1,36,588,3571,8136,6794,1887,133,1;
%e A056858 1,45,1002,8878,31532,44924,24717,4654,221,1;
%e A056858 1,55,1617,20053,104927,234412,221857,84170,11113,364,1;
%e A056858 1,66,2497,41965,310255,1025377,1528351,1006028,272557,25903,596,1;
%p A056858 b:= proc(n, i, m) option remember; expand(
%p A056858       `if`(n=0, x, add(b(n-1, j, max(m, j))*
%p A056858       `if`(j>i, x, 1), j=1..m+1)))
%p A056858     end:
%p A056858 T:= n->(p-> seq(coeff(p, x, i), i=1..n))(b(n, 1, 0)):
%p A056858 seq(T(n), n=1..12);  # _Alois P. Heinz_, Mar 24 2016
%t A056858 b[n_, i_, m_] := b[n, i, m] = Expand[If[n == 0, x, Sum[b[n - 1, j, Max[m, j]]*If[j > i, x, 1], {j, 1, m + 1}]]];
%t A056858 T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1, 0]];
%t A056858 Table[T[n], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, May 23 2016, after _Alois P. Heinz_ *)
%Y A056858 Cf. A000110 (row sums).
%Y A056858 Cf. A056857-A056863.
%Y A056858 Column 1 is triangular numbers (A000217); diagonal T(n, n-1) appears to be A001924.
%K A056858 easy,nonn,tabl
%O A056858 1,5
%A A056858 Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000
%E A056858 More terms from _Franklin T. Adams-Watters_, Jun 08 2006
%E A056858 Clarified definition and edited comment and example, _Joerg Arndt_, Mar 05 2016