cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056859 Triangle of number of falls in set partitions of n.

This page as a plain text file.
%I A056859 #20 May 24 2016 03:06:34
%S A056859 1,2,0,4,1,0,8,7,0,0,16,32,4,0,0,32,121,49,1,0,0,64,411,360,42,0,0,0,
%T A056859 128,1304,2062,624,22,0,0,0,256,3949,10163,6042,730,7,0,0,0,512,11567,
%U A056859 45298,45810,12170,617,1,0,0,0,1024,33056,187941,296017,141822,18325,385,0,0,0,0
%N A056859 Triangle of number of falls in set partitions of n.
%C A056859 Number of falls s_i > s_{i+1} in a set partition {s_1, ..., s_n} of {1, ..., n}, where s_i is the subset containing i, s(1) = 1 and s(i) <= 1 + max of previous s(j)'s.
%C A056859 The maximum number of falls is in a set partition like 1,2,1,3,2,1,... - _Franklin T. Adams-Watters_, Jun 08 2006
%D A056859 W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [Apparently unpublished]
%H A056859 Alois P. Heinz, <a href="/A056859/b056859.txt">Rows n = 1..100, flattened</a>
%e A056859 For example {1, 2, 1, 2, 2, 3} is a set partition of {1, 2, 3, 4, 5, 6} and has 1 fall, at i = 2.
%e A056859 T(n=3,f=0)=4 counts the partitions {1,1,1}, {1,1,2}, {1,2,2}, and {1,2,3}. T(n=3,f=1) counts the partition {1,2,1}. - _R. J. Mathar_, Mar 04 2016
%e A056859 1;
%e A056859 2,0;
%e A056859 4,1,0;
%e A056859 8,7,0,0;
%e A056859 16,32,4,0,0;
%e A056859 32,121,49,1,0,0;
%e A056859 64,411,360,42,0,0,0;
%e A056859 128,1304,2062,624,22,0,0,0;
%e A056859 256,3949,10163,6042,730,7,0,0,0;
%e A056859 512,11567,45298,45810,12170,617,1,0,0,0;
%e A056859 1024,33056,187941,296017,141822,18325,385,0,0,0,0;
%e A056859 2048,92721,739352,1708893,1318395,330407,21605,176,0,0,0,0;
%p A056859 b:= proc(n, i, m) option remember;
%p A056859       `if`(n=0, x, expand(add(b(n-1, j, max(m, j))*
%p A056859       `if`(j<i, x, 1), j=1..m+1)))
%p A056859     end:
%p A056859 T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 1, 0)):
%p A056859 seq(T(n), n=1..12);  # _Alois P. Heinz_, Mar 24 2016
%t A056859 b[n_, i_, m_] := b[n, i, m] = If[n == 0, x, Expand[Sum[b[n - 1, j, Max[m, j]]*If[j < i, x, 1], {j, 1, m + 1}]]];
%t A056859 T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1, 0]];
%t A056859 Table[T[n], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, May 24 2016, after _Alois P. Heinz_ *)
%Y A056859 Cf. A000110 (row sums).
%Y A056859 Cf. A056857-A056863.
%K A056859 easy,nonn,tabl
%O A056859 1,2
%A A056859 Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000
%E A056859 Corrected and extended by _Franklin T. Adams-Watters_, Jun 08 2006