This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056859 #20 May 24 2016 03:06:34 %S A056859 1,2,0,4,1,0,8,7,0,0,16,32,4,0,0,32,121,49,1,0,0,64,411,360,42,0,0,0, %T A056859 128,1304,2062,624,22,0,0,0,256,3949,10163,6042,730,7,0,0,0,512,11567, %U A056859 45298,45810,12170,617,1,0,0,0,1024,33056,187941,296017,141822,18325,385,0,0,0,0 %N A056859 Triangle of number of falls in set partitions of n. %C A056859 Number of falls s_i > s_{i+1} in a set partition {s_1, ..., s_n} of {1, ..., n}, where s_i is the subset containing i, s(1) = 1 and s(i) <= 1 + max of previous s(j)'s. %C A056859 The maximum number of falls is in a set partition like 1,2,1,3,2,1,... - _Franklin T. Adams-Watters_, Jun 08 2006 %D A056859 W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [Apparently unpublished] %H A056859 Alois P. Heinz, <a href="/A056859/b056859.txt">Rows n = 1..100, flattened</a> %e A056859 For example {1, 2, 1, 2, 2, 3} is a set partition of {1, 2, 3, 4, 5, 6} and has 1 fall, at i = 2. %e A056859 T(n=3,f=0)=4 counts the partitions {1,1,1}, {1,1,2}, {1,2,2}, and {1,2,3}. T(n=3,f=1) counts the partition {1,2,1}. - _R. J. Mathar_, Mar 04 2016 %e A056859 1; %e A056859 2,0; %e A056859 4,1,0; %e A056859 8,7,0,0; %e A056859 16,32,4,0,0; %e A056859 32,121,49,1,0,0; %e A056859 64,411,360,42,0,0,0; %e A056859 128,1304,2062,624,22,0,0,0; %e A056859 256,3949,10163,6042,730,7,0,0,0; %e A056859 512,11567,45298,45810,12170,617,1,0,0,0; %e A056859 1024,33056,187941,296017,141822,18325,385,0,0,0,0; %e A056859 2048,92721,739352,1708893,1318395,330407,21605,176,0,0,0,0; %p A056859 b:= proc(n, i, m) option remember; %p A056859 `if`(n=0, x, expand(add(b(n-1, j, max(m, j))* %p A056859 `if`(j<i, x, 1), j=1..m+1))) %p A056859 end: %p A056859 T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 1, 0)): %p A056859 seq(T(n), n=1..12); # _Alois P. Heinz_, Mar 24 2016 %t A056859 b[n_, i_, m_] := b[n, i, m] = If[n == 0, x, Expand[Sum[b[n - 1, j, Max[m, j]]*If[j < i, x, 1], {j, 1, m + 1}]]]; %t A056859 T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1, 0]]; %t A056859 Table[T[n], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, May 24 2016, after _Alois P. Heinz_ *) %Y A056859 Cf. A000110 (row sums). %Y A056859 Cf. A056857-A056863. %K A056859 easy,nonn,tabl %O A056859 1,2 %A A056859 Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000 %E A056859 Corrected and extended by _Franklin T. Adams-Watters_, Jun 08 2006