cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056860 Triangle T(n,k) = number of element-subset partitions of {1..n} with n-k+1 equalities (n >= 1, 1 <= k <= n).

This page as a plain text file.
%I A056860 #25 Jul 21 2019 21:57:42
%S A056860 1,1,1,1,2,2,1,3,6,5,1,4,12,20,15,1,5,20,50,75,52,1,6,30,100,225,312,
%T A056860 203,1,7,42,175,525,1092,1421,877,1,8,56,280,1050,2912,5684,7016,4140,
%U A056860 1,9,72,420,1890,6552,17052,31572,37260,21147
%N A056860 Triangle T(n,k) = number of element-subset partitions of {1..n} with n-k+1 equalities (n >= 1, 1 <= k <= n).
%C A056860 T(n,k) = number of permutations on [n] with n in position k in which 321 patterns only occur as part of 3241 patterns. Example: T(4,2)=3 counts 1423, 2413, 3412. - _David Callan_, Jul 20 2005
%C A056860 From _Gary W. Adamson_, Feb 24 2011: (Start)
%C A056860 Given rows of an array such that n-th row is the eigensequence of an infinite lower triangular matrix with first n columns of Pascal's triangle and the rest zeros. The reoriented finite differences of the array starting from the top are the rows of A056860.
%C A056860 The first few rows of the array are
%C A056860   1,   1,   1,   1,   1,   1, ...
%C A056860   1,   2,   3,   4,   5,   6, ...
%C A056860   1,   2,   5,  10,  17,  26, ...
%C A056860   1,   2,   5,  15,  37,  76, ...
%C A056860   1,   2,   5,  15,  52, 151, ...
%C A056860   ...
%C A056860 (End)
%D A056860 W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000.
%H A056860 David Callan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Callan/callan96.html">A Combinatorial Interpretation of the Eigensequence for Composition</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.4.
%F A056860 T(n, k) = binomial(n-1, k-1)*B(k-1) where B denotes the Bell numbers A000110. - _David Callan_, Jul 20 2005
%e A056860 T(n,k) starts:
%e A056860   1;
%e A056860   1, 1;
%e A056860   1, 2,  2;
%e A056860   1, 3,  6,   5;
%e A056860   1, 4, 12,  20,   15;
%e A056860   1, 5, 20,  50,   75,   52;
%e A056860   1, 6, 30, 100,  225,  312,   203;
%e A056860   1, 7, 42, 175,  525, 1092,  1421,   877;
%e A056860   1, 8, 56, 280, 1050, 2912,  5684,  7016,  4140;
%e A056860   1, 9, 72, 420, 1890, 6552, 17052, 31572, 37260, 21147;
%e A056860 Building row sums Sum_{c=1..k} T(n,c), the following array results:
%e A056860   1, 1,  1,   1,    1,    1,    1,     1,     1,     1, ...
%e A056860   1, 2,  2,   2,    2,    2,    2,     2,     2,     2, ...
%e A056860   1, 3,  5,   5,    5,    5,    5,     5,     5,     5, ...
%e A056860   1, 4, 10,  15,   15,   15,   15,    15,    15,    15, ...
%e A056860   1, 5, 17,  37,   52,   52,   52,    52,    52,    52, ...
%e A056860   1, 6, 26,  76,  151,  203,  203,   203,   203,   203, ...
%e A056860   1, 7, 37, 137,  362,  674,  877,   877,   877,   877, ...
%e A056860   1, 8, 50, 225,  750, 1842, 3263,  4140,  4140,  4140, ...
%e A056860   1, 9, 65, 345, 1395, 4307, 9991, 17007, 21147, 21147, ...
%Y A056860 Essentially same as A056857, where rows are read from left to right.
%Y A056860 T(2n+1,n+1) gives A124102.
%Y A056860 T(2n,n) gives A297926.
%K A056860 nonn,tabl,easy
%O A056860 1,5
%A A056860 _N. J. A. Sloane_, Oct 13 2000
%E A056860 More terms from _David Callan_, Jul 20 2005