This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056860 #25 Jul 21 2019 21:57:42 %S A056860 1,1,1,1,2,2,1,3,6,5,1,4,12,20,15,1,5,20,50,75,52,1,6,30,100,225,312, %T A056860 203,1,7,42,175,525,1092,1421,877,1,8,56,280,1050,2912,5684,7016,4140, %U A056860 1,9,72,420,1890,6552,17052,31572,37260,21147 %N A056860 Triangle T(n,k) = number of element-subset partitions of {1..n} with n-k+1 equalities (n >= 1, 1 <= k <= n). %C A056860 T(n,k) = number of permutations on [n] with n in position k in which 321 patterns only occur as part of 3241 patterns. Example: T(4,2)=3 counts 1423, 2413, 3412. - _David Callan_, Jul 20 2005 %C A056860 From _Gary W. Adamson_, Feb 24 2011: (Start) %C A056860 Given rows of an array such that n-th row is the eigensequence of an infinite lower triangular matrix with first n columns of Pascal's triangle and the rest zeros. The reoriented finite differences of the array starting from the top are the rows of A056860. %C A056860 The first few rows of the array are %C A056860 1, 1, 1, 1, 1, 1, ... %C A056860 1, 2, 3, 4, 5, 6, ... %C A056860 1, 2, 5, 10, 17, 26, ... %C A056860 1, 2, 5, 15, 37, 76, ... %C A056860 1, 2, 5, 15, 52, 151, ... %C A056860 ... %C A056860 (End) %D A056860 W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. %H A056860 David Callan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Callan/callan96.html">A Combinatorial Interpretation of the Eigensequence for Composition</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.4. %F A056860 T(n, k) = binomial(n-1, k-1)*B(k-1) where B denotes the Bell numbers A000110. - _David Callan_, Jul 20 2005 %e A056860 T(n,k) starts: %e A056860 1; %e A056860 1, 1; %e A056860 1, 2, 2; %e A056860 1, 3, 6, 5; %e A056860 1, 4, 12, 20, 15; %e A056860 1, 5, 20, 50, 75, 52; %e A056860 1, 6, 30, 100, 225, 312, 203; %e A056860 1, 7, 42, 175, 525, 1092, 1421, 877; %e A056860 1, 8, 56, 280, 1050, 2912, 5684, 7016, 4140; %e A056860 1, 9, 72, 420, 1890, 6552, 17052, 31572, 37260, 21147; %e A056860 Building row sums Sum_{c=1..k} T(n,c), the following array results: %e A056860 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A056860 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... %e A056860 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, ... %e A056860 1, 4, 10, 15, 15, 15, 15, 15, 15, 15, ... %e A056860 1, 5, 17, 37, 52, 52, 52, 52, 52, 52, ... %e A056860 1, 6, 26, 76, 151, 203, 203, 203, 203, 203, ... %e A056860 1, 7, 37, 137, 362, 674, 877, 877, 877, 877, ... %e A056860 1, 8, 50, 225, 750, 1842, 3263, 4140, 4140, 4140, ... %e A056860 1, 9, 65, 345, 1395, 4307, 9991, 17007, 21147, 21147, ... %Y A056860 Essentially same as A056857, where rows are read from left to right. %Y A056860 T(2n+1,n+1) gives A124102. %Y A056860 T(2n,n) gives A297926. %K A056860 nonn,tabl,easy %O A056860 1,5 %A A056860 _N. J. A. Sloane_, Oct 13 2000 %E A056860 More terms from _David Callan_, Jul 20 2005