cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056861 Triangle T(n,k) is the number of restricted growth strings (RGS) of set partitions of {1..n} that have an increase at index k (1<=k

This page as a plain text file.
%I A056861 #26 May 23 2016 02:46:17
%S A056861 1,3,2,10,7,6,37,27,23,21,151,114,97,88,83,674,523,446,403,378,363,
%T A056861 3263,2589,2217,1999,1867,1785,1733,17007,13744,11829,10658,9923,9452,
%U A056861 9145,8942,94828,77821,67340,60689,56380,53541,51644,50361,49484,562595
%N A056861 Triangle T(n,k) is the number of restricted growth strings (RGS) of set partitions of {1..n} that have an increase at index k (1<=k<n).
%C A056861 Number of rises s_{k+1} > s_k in an RGS [s_1, ..., s_n] of a set partition of {1, ..., n}, where s_i is the subset containing i, and s_i <= 1 + max(j<i, s_j).
%C A056861 Note that the number of equalities at any index is B(n-1), where B(n) are the Bell numbers. - _Franklin T. Adams-Watters_, Jun 08 2006
%D A056861 W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [apparently unpublished, _Joerg Arndt_, Mar 05 2016]
%H A056861 Alois P. Heinz, <a href="/A056861/b056861.txt">Rows n = 2..100, flattened</a>
%e A056861 For example, [1, 2, 1, 2, 2, 3] is the RGS of a set partition of {1, 2, 3, 4, 5, 6} and has 3 rises, at i = 1, i = 3 and i = 5.
%e A056861 1;
%e A056861 3,2;
%e A056861 10,7,6;
%e A056861 37,27,23,21;
%e A056861 151,114,97,88,83;
%e A056861 674,523,446,403,378,363;
%e A056861 3263,2589,2217,1999,1867,1785,1733;
%e A056861 17007,13744,11829,10658,9923,9452,9145,8942;
%e A056861 94828,77821,67340,60689,56380,53541,51644,50361,49484;
%e A056861 562595,467767,406953,367101,340551,322619,310365,301905,296011,291871;
%e A056861 3535027,2972432,2599493,2348182,2176575,2058068,1975425,1917290,1876075, 1846648,1825501;
%t A056861 b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, {1, 0}, Sum[Function[p, p + {0, If[j<i, p[[1]]*x^t, 0]}][b[n-1, j, Max[m, j], t+1]], {j, 1, m+1}]];
%t A056861 T[n_] := BellB[n] - BellB[n-1] - Function[p, Table[Coefficient[p, x, i], {i, 1, n-1}]][b[n, 1, 0, 0][[2]]];
%t A056861 Table[T[n], {n, 2, 12}] // Flatten (* _Jean-François Alcover_, May 23 2016, after _Alois P. Heinz_ *)
%Y A056861 Cf. Bell numbers A005493, A011965.
%Y A056861 Cf. A056857-A056863.
%K A056861 easy,nonn,tabl
%O A056861 2,2
%A A056861 Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000
%E A056861 Edited and extended by _Franklin T. Adams-Watters_, Jun 08 2006
%E A056861 Clarified definition and edited comment and example, _Joerg Arndt_, Mar 08 2016
%E A056861 Several terms corrected, _R. J. Mathar_, Mar 08 2016