cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056862 Triangle T(n,k) is the number of restricted growth strings (RGS) of set partitions of {1..n} that have a decrease at index k (1<=k

This page as a plain text file.
%I A056862 #28 May 23 2016 02:46:24
%S A056862 0,0,1,0,3,4,0,10,14,16,0,37,54,63,68,0,151,228,271,296,311,0,674,
%T A056862 1046,1264,1396,1478,1530,0,3263,5178,6349,7084,7555,7862,8065,0,
%U A056862 17007,27488,34139,38448,41287,43184,44467,45344,0,94828,155642,195494,222044,239976,252230,260690,266584,270724
%N A056862 Triangle T(n,k) is the number of restricted growth strings (RGS) of set partitions of {1..n} that have a decrease at index k (1<=k<n).
%C A056862 Number of falls s_k > s_{k+1} in a RGS [s_1, ..., s_n] of a set partition of {1, ..., n}, where s_i is the subset containing i, s_1 = 1 and s_i <= 1 + max(j<i, s_j).
%C A056862 Note that the number of equalities at any index is B(n-1), where B(n) are the Bell numbers. - _Franklin T. Adams-Watters_, Jun 08 2006
%D A056862 W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [apparently unpublished, _Joerg Arndt_, Mar 05 2016]
%H A056862 Alois P. Heinz, <a href="/A056862/b056862.txt">Rows n = 2..100, flattened</a>
%F A056862 T(n,k) = B(n) - B(n-1) - A056861(n,k). - _Franklin T. Adams-Watters_, Jun 08 2006
%F A056862 Conjecture: T(n,3) = 2*A011965(n). - _R. J. Mathar_, Mar 08 2016
%e A056862 For example, [1, 2, 1, 2, 2, 3] is the RGS of a set partition of {1, 2, 3, 4, 5, 6} and has 1 fall, at i = 2.
%e A056862 0;
%e A056862 0,1;
%e A056862 0,3,4;
%e A056862 0,10,14,16;
%e A056862 0,37,54,63,68;
%e A056862 0,151,228,271,296,311;
%e A056862 0,674,1046,1264,1396,1478,1530;
%e A056862 0,3263,5178,6349,7084,7555,7862,8065;
%e A056862 0,17007,27488,34139,38448,41287,43184,44467,45344;
%e A056862 0,94828,155642,195494,222044,239976,252230,260690,266584,270724;
%e A056862 0,562595,935534,1186845,1358452,1476959,1559602,1617737,1658952,1688379, 1709526;
%p A056862 b:= proc(n, i, m, t) option remember; `if`(n=0, [1, 0],
%p A056862       add((p-> p+[0, `if`(j<i, p[1]*x^t, 0)])(
%p A056862         b(n-1, j, max(m, j), t+1)), j=1..m+1))
%p A056862     end:
%p A056862 T:= n-> (p-> seq(coeff(p, x, i), i=1..n-1))(b(n, 1, 0$2)[2]):
%p A056862 seq(T(n), n=2..12);  # _Alois P. Heinz_, Mar 24 2016
%t A056862 b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, {1, 0}, Sum[Function[p, p + {0, If[j<i, p[[1]]*x^t, 0]}][b[n-1, j, Max[m, j], t+1]], {j, 1, m+1}]];
%t A056862 T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n - 1}]][b[n, 1, 0, 0][[2]]];
%t A056862 Table[T[n], {n, 2, 12}] // Flatten (* _Jean-François Alcover_, May 23 2016, after _Alois P. Heinz_ *)
%Y A056862 Cf. Bell numbers A005493.
%Y A056862 Cf. A056857-A056863.
%K A056862 easy,nonn,tabl
%O A056862 2,5
%A A056862 Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000
%E A056862 Edited and extended by _Franklin T. Adams-Watters_, Jun 08 2006
%E A056862 Clarified definition and edited comment and example, _Joerg Arndt_, Mar 08 2016
%E A056862 Data corrected, _R. J. Mathar_, Mar 08 2016