This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056868 #56 Dec 20 2021 10:03:43 %S A056868 6,10,12,14,18,20,21,22,24,26,28,30,34,36,38,39,40,42,44,46,48,50,52, %T A056868 54,55,56,57,58,60,62,63,66,68,70,72,74,75,76,78,80,82,84,86,88,90,92, %U A056868 93,94,96,98,100,102,104,105,106,108,110,111,112,114,116,117,118,120 %N A056868 Numbers that are not nilpotent numbers. %C A056868 A number is nilpotent if every group of order n is nilpotent. %C A056868 The sequence "Numbers of the form (k*i + 1)*k*j with i, j >= 1 and k >= 2" agrees with this for the first 146 terms but then differs. Cf. A300737. - _Gionata Neri_, Mar 11 2018 %H A056868 T. D. Noe, <a href="/A056868/b056868.txt">Table of n, a(n) for n = 1..10000</a> %H A056868 J. Pakianathan and K. Shankar, <a href="http://www.jstor.org/stable/2589118">Nilpotent Numbers</a>, Amer. Math. Monthly, 107, August-September 2000, pp. 631-634. %F A056868 n is in this sequence if p^k = 1 mod q for primes p and q dividing n such that p^k divides n. - _Charles R Greathouse IV_, Aug 27 2012 %e A056868 From _Bernard Schott_, Dec 19 2021: (Start) %e A056868 There are 2 groups with order 6: C_6 that is cyclic so nilpotent, and the symmetric group S_3 that is not nilpotent, hence 6 is a term. %e A056868 There are also 2 groups with order 10: C_10 that is cyclic so nilpotent, and the dihedral group D_10 that is not nilpotent, hence 10 is another term. (End) %t A056868 nilpotentQ[n_] := With[{f = FactorInteger[n]}, Sum[ Boole[ Mod[p[[1]]^p[[2]], q[[1]]] == 1], {p, f}, {q, f}]] == 0; Select[ Range[120], !nilpotentQ[#]& ] (* _Jean-François Alcover_, Sep 03 2012 *) %o A056868 (PARI) is(n)=my(f=factor(n));for(k=1,#f[,1], for(j=1,f[k,2], if(gcd(n, f[k,1]^j-1)>1, return(1)))); 0 \\ _Charles R Greathouse IV_, Sep 18 2012 %o A056868 (Haskell) %o A056868 a056868 n = a056868_list !! (n-1) %o A056868 a056868_list = filter (any (== 1) . pks) [1..] where %o A056868 pks x = [p ^ k `mod` q | let fs = a027748_row x, q <- fs, %o A056868 (p,e) <- zip fs $ a124010_row x, k <- [1..e]] %o A056868 -- _Reinhard Zumkeller_, Jun 28 2013 %Y A056868 Complement of A056867. %Y A056868 Subsequence of A060652; A068919 is a subsequence. %Y A056868 Cf. A003277, A051532, A056866, A027748, A124010, A300737. %K A056868 nonn,nice,easy %O A056868 1,1 %A A056868 _N. J. A. Sloane_, Sep 02 2000 %E A056868 More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001