This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056874 #37 Dec 25 2017 20:04:00 %S A056874 3,5,11,23,31,37,47,53,59,67,71,89,97,103,113,137,157,163,179,181,191, %T A056874 199,223,229,251,257,269,311,313,317,331,353,367,379,383,389,397,401, %U A056874 419,421,433,443,449,463,467,487,499,509,521,577,587,599 %N A056874 Primes of form x^2+xy+3y^2, discriminant -11. %C A056874 Also, primes of form (x^2+11*y^2)/4. %C A056874 Also, primes of the form x^2-xy+3y^2 with x and y nonnegative. - _T. D. Noe_, May 07 2005 %C A056874 Primes congruent to 0, 1, 3, 4, 5 or 9 (mod 11). As this discriminant has class number 1, all binary quadratic forms ax^2+bxy+cy^2 with b^2-4ac=-11 represent these primes. - _Rick L. Shepherd_, Jul 25 2014 %C A056874 Also, primes which are squares (mod 11) (or, (mod 22), cf. A191020). - _M. F. Hasler_, Jan 15 2016 %C A056874 Also, primes p such that Legendre(-11,p) = 0 or 1. - _N. J. A. Sloane_, Dec 25 2017 %H A056874 Vincenzo Librandi, N. J. A. Sloane and Ray Chandler, <a href="/A056874/b056874.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi, next 4000 terms from N. J. A. Sloane] %H A056874 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %t A056874 QuadPrimes2[1, 1, 3, 100000] (* see A106856 *) %o A056874 (PARI) %o A056874 { fc2(a,b,c,M) = my(p,t1,t2,n); %o A056874 m = 0; %o A056874 for(n=1,M, p = prime(n); %o A056874 t2 = qfbsolve(Qfb(a,b,c),p); if(t2 == 0,, m++; print(m," ",p ))); %o A056874 } %o A056874 fc2(1,-1,3,10703); %Y A056874 Cf. A002346 and A002347 for values of x and y. %Y A056874 Primes in A028954. %K A056874 nonn,easy %O A056874 1,1 %A A056874 _N. J. A. Sloane_, Sep 02 2000 %E A056874 Edited by _N. J. A. Sloane_, Jun 01 2014 and Jun 16 2014