A056888 a(n) = number of k such that sum of digits of 9^k is 9n.
2, 3, 2, 0, 4, 1, 3, 1, 1, 5, 2, 2, 3, 1, 0, 3, 6, 2, 3, 0, 0, 4, 1, 3, 1, 4, 1, 1, 0, 1, 3, 2, 3, 5, 1, 1, 3, 3, 2, 5, 0, 3, 3, 1, 1, 3, 2, 2, 0, 2, 1, 5, 2, 1, 1, 1, 1, 3, 4, 5, 1, 0, 1, 3, 2, 1, 2, 4, 5, 1, 1, 2, 1, 0, 1, 2, 4, 1, 2, 5, 0, 2, 4, 3, 2, 2, 1, 2, 2, 2, 0, 2, 3, 2, 1, 5, 1, 0, 4
Offset: 1
Examples
There are two powers of 9 with digit-sum 9, namely 9 and 81, so a(1) = 2.
References
- H. G. Senge and E. G. Straus, PV-numbers and sets of multiplicity, Periodica Math. Hungar., 3 (1971), 93-100.
- C. L. Stewart, On the representation of an integer in two different bases, J. Reine Angew. Math., 319 (1980), 63-72.
Crossrefs
Cf. A065999.
Comments