cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056895 If the smallest prime with a square excess of n is p then a(n)^2 = p - n.

This page as a plain text file.
%I A056895 #14 May 05 2019 09:10:26
%S A056895 1,1,2,3,6,5,4,9,8,7,6,7,10,15,8,9,24,11,12,21,16,13,12,13,16,15,14,
%T A056895 17,18,31,20,27,20,23,18,19,22,21,20,23,24,23,24,27,28,29,30,25,38,39,
%U A056895 26,31,30,35,28,45,34,31,42,31,34,33,32,33,36,35,34,75,40,37,36,41,48,45
%N A056895 If the smallest prime with a square excess of n is p then a(n)^2 = p - n.
%H A056895 Ivan Neretin, <a href="/A056895/b056895.txt">Table of n, a(n) for n = 1..10000</a>
%F A056895 a(n) = sqrt(A056893(n)-n) = A000196(A056893(n)) = sqrt(A056894(n)).
%e A056895 a(4)=3 because the smallest prime with a square excess of 4 is 13 and 13 - 4 = 3^2.
%t A056895 a = {}; Do[p = 2; While[n != p - (r = Floor@Sqrt[p])^2, p = NextPrime[p]]; AppendTo[a, r], {n, 74}]; a (* _Ivan Neretin_, May 02 2019 *)
%o A056895 (PARI) a(n) = {my(p=2); while(n != p-sqrtint(p)^2, p = nextprime(p+1)); sqrtint(p - n);} \\ _Michel Marcus_, May 05 2019
%Y A056895 Cf. A000040, A000196, A002496, A048760, A053186.
%Y A056895 Cf. A056892, A056893, A056894, A056896, A056897, A056898.
%K A056895 nonn
%O A056895 1,3
%A A056895 _Henry Bottomley_, Jul 05 2000