cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056900 Numbers n where 36n^2+36n+11 is prime.

This page as a plain text file.
%I A056900 #14 Sep 08 2022 08:45:01
%S A056900 0,1,2,3,5,6,7,9,13,16,17,18,19,20,24,28,36,37,39,40,41,42,45,49,50,
%T A056900 51,53,57,58,60,61,62,64,69,70,71,73,74,75,79,83,85,91,92,93,95,100,
%U A056900 101,108,112,113,116,118,125,129,134,136,139,144
%N A056900 Numbers n where 36n^2+36n+11 is prime.
%C A056900 36m^2+36m+11=(6m+3)^2+2, i.e. two more than the square of odd multiples of 3. 36m^2+36m+11=72*(m*(m+1)/2)+11, i.e. eleven more than seventy-two times triangular numbers.
%H A056900 Vincenzo Librandi, <a href="/A056900/b056900.txt">Table of n, a(n) for n = 0..1000</a>
%F A056900 a(n) =A002024((A056899(n+2)-11)/72)
%F A056900 a(n) = A091199(n+1) - 1. - _Jeppe Stig Nielsen_, May 14 2017
%e A056900 a(3)=3 because 36*3^2+36*3+11=443 which is prime
%t A056900 lst={};Do[If[PrimeQ[36*n^2+36*n+11],AppendTo[lst,n]],{n,0,100}];lst (* _Vincenzo Librandi_, Jul 14 2012 *)
%t A056900 Select[Range[0,200],PrimeQ[36#^2+36#+11]&] (* _Harvey P. Dale_, Sep 19 2020 *)
%o A056900 (Magma) [n: n in [0..200]| IsPrime(36*n^2+36*n+11)]; // _Vincenzo Librandi_, Jul 14 2012
%Y A056900 This sequence (with the formula above) generates all except the first two terms of the sequence of primes of the form k^2+2, A056899.
%Y A056900 Cf. A091199.
%K A056900 nonn,easy
%O A056900 0,3
%A A056900 _Henry Bottomley_, Jul 05 2000