cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056913 Odd squarefree numbers for which the number of prime divisors is even.

This page as a plain text file.
%I A056913 #33 Jul 02 2025 16:02:00
%S A056913 1,15,21,33,35,39,51,55,57,65,69,77,85,87,91,93,95,111,115,119,123,
%T A056913 129,133,141,143,145,155,159,161,177,183,185,187,201,203,205,209,213,
%U A056913 215,217,219,221,235,237,247,249,253,259,265,267,287,291,295,299,301,303
%N A056913 Odd squarefree numbers for which the number of prime divisors is even.
%C A056913 Liouville function lambda(n) (A008836) is positive.
%C A056913 From _Peter Munn_, Jan 16 2020: (Start)
%C A056913 The sequence is closed under the commutative binary operation A059897(.,.). As integers are self-inverse under A059897, it forms a subgroup of the positive integers considered as a group under A059897.
%C A056913 This sequence is the intersection of A000379 and A056911, which are also subgroups of the positive integers under A059897.
%C A056913 (End)
%C A056913 The asymptotic density of this sequence is 2/Pi^2 (A185197). - _Amiram Eldar_, Oct 06 2020
%H A056913 Charles R Greathouse IV, <a href="/A056913/b056913.txt">Table of n, a(n) for n = 1..10000</a>
%H A056913 H. Gupta, <a href="/A002556/a002556.pdf"> A formula for L(n)</a>, J. Indian Math. Soc., 7 (1943), 68-71. [Annotated scanned copy]
%t A056913 f[n_]:=Last/@FactorInteger[n]=={1,1}&&FactorInteger[n][[1,1]]>2; a=6;lst={1};Do[If[f[n],AppendTo[lst,n]],{n,6!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 23 2009 *)
%t A056913 Select[Range[1, 303, 2], MoebiusMu[#] == 1 &] (* _Amiram Eldar_, Oct 06 2020 *)
%o A056913 (PARI) list(lim)=my(v=List([1])); forfactored(n=15,lim\1, if(n[2][1,1]>2 && vecmax(n[2][,2])==1 && #(n[2][,2])%2==0, listput(v,n[1]))); Vec(v) \\ _Charles R Greathouse IV_, Nov 05 2017
%o A056913 (Magma) [k:k in [1..303 by 2]| IsSquarefree(k) and IsEven(#PrimeDivisors(k))]; // _Marius A. Burtea_, Jan 21 2020
%Y A056913 Intersection of A056911 with either of A000379, A028260.
%Y A056913 Cf. A056912, A059897, A008836, A026424, A185197.
%K A056913 easy,nonn
%O A056913 1,2
%A A056913 _James Sellers_, Jul 07 2000