cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056947 Theta series of nonexistent Niemeier lattice of Coxeter number 1.

This page as a plain text file.
%I A056947 #13 Jul 11 2021 03:42:35
%S A056947 1,24,195984,16779168,397998672,4629497040,34417510848,187489533504,
%T A056947 814881802320,2975548760568,9486548517600,27052958750688,
%U A056947 70486228096704,169931081461008,384163595996544,820166650027200,1668890114013264,3249630946490544,6096882726702288
%N A056947 Theta series of nonexistent Niemeier lattice of Coxeter number 1.
%D A056947 J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, 1988.
%H A056947 Andy Huchala, <a href="/A056947/b056947.txt">Table of n, a(n) for n = 0..20000</a>
%F A056947 E_12(z)+(24h-c12)*D(12) where D(12) is unique cusp form of weight 12, c12=(2*Pi)^12/(zeta(12)*gamma(12)) and h=1.
%F A056947 a(n) = (A029828(n) - 48936*A000594(n))/691. - _Andy Huchala_, Jul 11 2021
%e A056947 G.f.: 1 + 24*q + 195984*q^2 + 16779168*q^3 + ...
%o A056947 (Sage)
%o A056947 d = CuspForms(1, 12).0.q_expansion(20);
%o A056947 e =(eisenstein_series_qexp(12,20, normalization='integral'))
%o A056947 list(e/691-(48936/691)*d) # _Andy Huchala_, Jul 10 2021
%Y A056947 Cf. A029828, A000594.
%K A056947 nonn
%O A056947 0,2
%A A056947 Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jul 17 2000