This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057004 #9 Aug 10 2019 11:12:04 %S A057004 1,1,1,1,3,1,1,7,7,1,1,15,41,26,1,1,31,235,604,97,1,1,63,1361,14120, %T A057004 13753,624,1,1,127,7987,334576,1712845,504243,4163,1,1,255,47321, %U A057004 7987616,207009649,371515454,24824785,34470,1,1,511,281995,191318464 %N A057004 Array T(n,k) = number of conjugacy classes of subgroups of index k in free group of rank n, read by antidiagonals. %D A057004 J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. %D A057004 R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112. %H A057004 M. Hofmeister, <a href="https://www.semanticscholar.org/paper/A-Note-on-Counting-Connected-Graph-Covering-Hofmeister/c32eb5976adfcc33573cd3688ad1259750dd8c75">A Note on Counting Connected Graph Covering Projections</a>, SIAM J. Discrete Math., 11 (1998), 286-292. See page 291 Table 4.3. %H A057004 J. H. Kwak and J. Lee, <a href="http://dx.doi.org/10.1002/(SICI)1097-0118(199610)23:2%3C105::AID-JGT1%3E3.0.CO;2-X">Enumeration of connected graph coverings</a>, J. Graph Th., 23 (1996), 105-109. %H A057004 J. H. Kwak and J. Lee, <a href="https://web.archive.org/web/20061002144237/http://com2mac.postech.ac.kr/Lecture/Lec-1.pdf">Enumeration of graph coverings and surface branched coverings</a>, Lecture Note Series 1 (2001), Com^2MaC-KOSEF, Korea. See chapter 3. %H A057004 V. A. Liskovets, <a href="https://doi.org/10.1023/A:1005950823566">Reductive enumeration under mutually orthogonal group actions</a>, Acta Applic. Math., 52 (1998), 91-120. %e A057004 Array T(n,k) begins: %e A057004 1 1 1 1 1 1 1 ... %e A057004 1 3 7 26 97 624 4163 ... %e A057004 1 7 41 604 13753 504243 ... %e A057004 1 15 235 14120 1712845 ... %Y A057004 Rows, columns, main diagonal give A057005-A057013, A160871. %K A057004 nonn,tabl,nice %O A057004 1,5 %A A057004 _N. J. A. Sloane_, Sep 09 2000 %E A057004 More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001