A057030 Let P(n) of a sequence s(1),s(2),s(3),... be obtained by leaving s(1),...,s(n-1) fixed and reversing every n consecutive terms thereafter; apply P(2) to 1,2,3,... to get PS(2), then apply P(3) to PS(2) to get PS(3), then apply P(4) to PS(3), etc. The limit of PS(n) is A057030.
1, 3, 4, 6, 11, 13, 14, 22, 27, 29, 40, 42, 47, 55, 66, 68, 83, 85, 86, 110, 115, 123, 138, 140, 161, 179, 180, 182, 223, 231, 236, 270, 275, 277, 314, 332, 337, 371, 382, 384, 425, 427, 438, 472, 477, 537, 542, 550, 555, 619, 630
Offset: 1
Examples
PS(2) begins with 1,3,2,5,4,7,6; PS(3) begins with 1,3,4,5,2,9,6; PS(4) begins with 1,3,4,6,9,2,5.
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
a057030=Range[x=3500]; Do[a057030=Flatten[Join[{Take[a057030,n-1]},Map[Reverse,Partition[Drop[a057030,n-1],n]]]],{n,2,NestWhile[#+1&,1,(x=# Floor[x/#])>0&]-1}]; a057030 (* Peter J. C. Moses, Nov 10 2016 *)
Formula
Conjecture: a(n) = A007062(n+1) - 1 for n > 0. - Mikhail Kurkov, Mar 10 2022