cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057032 Let P(n) of a sequence s(1), s(2), s(3), ... be obtained by leaving s(1), ..., s(n-1) fixed and forward-cyclically permuting every n consecutive terms thereafter; apply P(2) to 1, 2, 3, ... to get PS(2), then apply P(3) to PS(2) to get PS(3), then apply P(4) to PS(3), etc. The limit of PS(n) as n -> oo is this sequence.

Original entry on oeis.org

1, 3, 4, 7, 6, 10, 8, 16, 15, 21, 12, 22, 14, 27, 28, 36, 18, 33, 20, 43, 35, 39, 24, 53, 34, 45, 46, 50, 30, 66, 32, 78, 52, 57, 55, 81, 38, 63, 59, 88, 42, 86, 44, 96, 87, 75, 48, 119, 64, 111, 76, 101, 54, 103, 79, 144, 83, 93, 60, 141, 62, 99, 113, 173, 91, 136, 68, 139
Offset: 1

Views

Author

Clark Kimberling, Jul 29 2000

Keywords

Comments

Conjecture: a(n) - 1 is prime if and only if a(n) = n + 1. - Mikhail Kurkov, Mar 10 2022

Examples

			PS(2) begins with 1, 3, 2, 5, 4, 7, 6;
PS(3) begins with 1, 3, 4, 2, 5, 9, 7;
PS(4) begins with 1, 3, 4, 7, 2, 5, 9.
		

Crossrefs

Programs

  • MATLAB
    function m = A057032(i) m = PS(i, i); function m = PS(i, n) if i == 1 m = n; elseif n < i m = PS(i - 1, n); else if mod(n, i) == 0 m = PS(i - 1, n + i - 1); else m = PS(i - 1, n - 1); end end
    
  • Mathematica
    PS[i_, n_] := If[i == 1, n, If[n < i, PS[i-1, n], If[Mod[n, i] == 0, PS[i-1, n+i-1], PS[i-1, n-1]]]]; a[n_] := PS[n, n]; Table[a[n], {n, 1, 68}] (* Jean-François Alcover, Oct 20 2011, after MATLAB *)
  • PARI
    a(n) = { my (p=0); forstep (d=n, 1, -1, if (p%d==0, p+=d)); p } \\ Rémy Sigrist, Aug 25 2020

Formula

Conjecture: a(n) = A057064(n+1) - 1 for n > 0. - Mikhail Kurkov, Mar 10 2022

Extensions

More terms from David Wasserman, Apr 22 2002