This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057060 #26 Feb 25 2023 03:10:44 %S A057060 1,2,2,1,1,3,2,4,2,1,3,1,5,7,2,8,4,6,1,5,7,1,5,11,6,10,12,2,4,8,7,11, %T A057060 1,3,13,15,4,10,14,2,8,10,1,3,7,9,1,13,17,19,2,8,10,20,4,10,16,18,1,5, %U A057060 7,17,7,11,13,17,6,12,22,24,2,8,16,22,1,5,11 %N A057060 a(n) = number of the row of (R(i,j)) that contains prime(n), where R(i,j) is the rectangle with descending antidiagonals 1; 2,3; 4,5,6; ... %C A057060 The rectangle has this corner: %C A057060 1, 2, 4, 7, 11, 16, 22, 29, ... %C A057060 3, 5, 8, 12, 17, 23, 30, 38, ... %C A057060 6, 9, 13, 18, 24, 31, 39, 48, ... %C A057060 10, 14, 19, 25, 32, 40, 49, 59, ... %C A057060 15, 20, 26, 33, 41, 50, 60, 71, ... %C A057060 21, 27, 34, 42, 51, 61, 72, 84, ... %C A057060 28, 35, 43, 52, 62, 73, 85, 98, ... %F A057060 a(n) = A002260(prime(n)). - _Kevin Ryde_, Feb 12 2023 %e A057060 The 8th prime, 19, is in row 4, so a(8) = 4. %t A057060 s = Flatten[Table[Range[n], {n, 1, 40}]]; %t A057060 Table[s[[Prime[n]]], {n, 1, 100}] %o A057060 (PARI) f(n) = n-binomial((sqrtint(8*n)+1)\2, 2); \\ A002260 %o A057060 a(n) = f(prime(n)); \\ _Michel Marcus_, Feb 24 2023 %Y A057060 Cf. A000027, A000040, A002260, A185787. %Y A057060 See A057061 for primes in columns. %K A057060 nonn %O A057060 1,2 %A A057060 _Clark Kimberling_, Jul 30 2000 %E A057060 Edited by _Clark Kimberling_, Feb 13 2023