This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057062 #41 Jun 19 2024 15:40:59 %S A057062 2,2,3,4,5,5,6,6,7,8,8,9,9,9,10,10,11,11,12,12,12,13,13,13,14,14,14, %T A057062 15,15,15,16,16,17,17,17,17,18,18,18,19,19,19,20,20,20,20,21,21,21,21, %U A057062 22,22,22,22,23,23,23,23,24,24,24,24,25,25 %N A057062 Let R(i,j) be the infinite square array with antidiagonals 1; 2,3; 4,5,6; ...; the n-th prime is in antidiagonal a(n). %C A057062 The smallest integer in the j-th antidiagonal is A000124(j-1). So a(n) is the index j such that A000124(j-1) <= prime(n) < A000124(j). - _R. J. Mathar_, Dec 02 2011 %H A057062 T. D. Noe, <a href="/A057062/b057062.txt">Table of n, a(n) for n = 1..1000</a> %F A057062 a(n) = round(sqrt(2*prime(n))). - _Vladeta Jovovic_, Jun 14 2003 %e A057062 The array begins %e A057062 1 3 6 10 15 ... %e A057062 2 5 9 14 ... %e A057062 4 8 13 ... %e A057062 7 12 ... %e A057062 11 ... %e A057062 ... %e A057062 The third prime, 5, is in the 3rd antidiagonal, so a(3) = 3. %t A057062 Table[Round[Sqrt[2*Prime[n]]], {n, 100}] (* _T. D. Noe_, Dec 03 2011 *) %o A057062 (PARI) a(n)=(sqrtint(8*prime(n))+1)\2 \\ _Charles R Greathouse IV_, Jul 26 2012 %o A057062 (Haskell) %o A057062 a057062 n = a057062_list !! (n-1) %o A057062 a057062_list = f 1 [1..] where %o A057062 f j xs = (replicate (sum $ map a010051 dia) j) ++ f (j + 1) xs' %o A057062 where (dia, xs') = splitAt j xs %o A057062 -- _Reinhard Zumkeller_, Jul 26 2012 %o A057062 (Python) %o A057062 from math import isqrt %o A057062 from sympy import prime %o A057062 def A057062(n): return isqrt(prime(n)<<3)+1>>1 # _Chai Wah Wu_, Jun 19 2024 %Y A057062 Cf. A057045, A057048, A022846, A057057, A057054. A066888 counts how many times each positive integer appears in this sequence. %Y A057062 Cf. A010051. %K A057062 nonn %O A057062 1,1 %A A057062 _Clark Kimberling_, Jul 30 2000