This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057086 #41 Jan 06 2025 10:57:23 %S A057086 1,10,90,800,7100,63000,559000,4960000,44010000,390500000,3464900000, %T A057086 30744000000,272791000000,2420470000000,21476790000000, %U A057086 190563200000000,1690864100000000,15003009000000000,133121449000000000,1181184400000000000,10480629510000000000 %N A057086 Scaled Chebyshev U-polynomials evaluated at sqrt(10)/2. %C A057086 This is the m=10 member of the m-family of sequences S(n,sqrt(m))*(sqrt(m))^n; for S(n,x) see Formula. The m=4..9 instances are A001787, A030191, A030192, A030240, A057084-5 and the m=1..3 signed sequences are A010892, A009545, A057083. %C A057086 The characteristic roots are rp(m) := (m + sqrt(m*(m-4)))/2 and rm(m) := (m-sqrt(m*(m-4)))/2 and a(n,m)= (rp(m)^(n+1) - rm(m)^(n+1))/(rp(m) - rm(m)) is the Binet form of these m-sequences. %H A057086 Colin Barker, <a href="/A057086/b057086.txt">Table of n, a(n) for n = 0..1000</a> %H A057086 A. F. Horadam, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/5-5/horadam.pdf">Special properties of the sequence W_n(a,b; p,q)</a>, Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=10, q=-10. %H A057086 Wolfdieter Lang, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/38-5/lang.pdf">On polynomials related to powers of the generating function of Catalan's numbers</a>, Fib. Quart. 38 (2000) 408-419. Eqs.(38) and (45),lhs, m=10. %H A057086 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %H A057086 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-10). %F A057086 a(n) = 10*(a(n-1) - a(n-2)), a(-1)=0, a(0)=1. %F A057086 a(n) = S(n, sqrt(10))*(sqrt(10))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310. %F A057086 a(2*k) = A057080(k)*10^k, a(2*k+1) = A001090(k)*10^(k+1). %F A057086 G.f.: 1/(1-10*x+10*x^2). %F A057086 a(n) = Sum_{k=0..n} A109466(n,k)*10^k. - _Philippe Deléham_, Oct 28 2008 %t A057086 Join[{a=1,b=10},Table[c=10*b-10*a;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 20 2011 *) %o A057086 (Sage) [lucas_number1(n,10,10) for n in range(1, 20)] # _Zerinvary Lajos_, Apr 26 2009 %o A057086 (PARI) Vec(1/(1-10*x+10*x^2) + O(x^30)) \\ _Colin Barker_, Jun 14 2015 %o A057086 (Magma) [(10)^n*Evaluate(DicksonSecond(n, 1/10), 1): n in [0..30]]; // _G. C. Greubel_, May 02 2022 %Y A057086 Cf. A001090, A001787, A030191, A030192, A030240, A049310. %Y A057086 Cf. A009545, A010892, A057080, A057083, A057084, A057085. %K A057086 nonn,easy %O A057086 0,2 %A A057086 _Wolfdieter Lang_, Aug 11 2000