cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057136 Palindromes whose square root is a palindrome.

Original entry on oeis.org

0, 1, 4, 9, 121, 484, 10201, 12321, 14641, 40804, 44944, 1002001, 1234321, 4008004, 100020001, 102030201, 104060401, 121242121, 123454321, 125686521, 400080004, 404090404, 10000200001, 10221412201, 12102420121, 12345654321, 40000800004
Offset: 1

Views

Author

Henry Bottomley, Aug 12 2000

Keywords

Comments

Always contain an odd number of digits.

Examples

			a(8) = 14641 since 14641 = 121^2 and 121 is also a palindrome
		

Crossrefs

Cf. A000290, A002113, A002779, A057135 (the square roots).

Programs

  • Maple
    dmax:= 7: # to get all terms with up to dmax digits
    Res:= 0,1,2^2,3^2,11^2,22^2:
    Po:= [[0],[1],[2],[3]]: Pe:= [[0,0],[1,1],[2,2]]:
    for d from 1 to dmax do
      if d::odd then
        Po:= select(t -> add(s^2,s=t) < 10, [seq(seq([i,op(t),i], t=Po),i=0..2)]);
        Res:= Res, op(map(proc(p) if p[1] <> 0 then add(p[i]*10^(i-1),i=1..nops(p))^2 fi end proc, Po))
      else
        Pe:= select(t -> add(s^2,s=t) < 10, [seq(seq([i,op(t),i], t=Pe),i=0..2)]);
        Res:= Res, op(map(proc(p) if p[1] <> 0 then add(p[i]*10^(i-1),i=1..nops(p))^2 fi end proc, Pe))
      fi;
    od:
    Res; # Robert Israel, Jun 21 2017
  • Mathematica
    Select[Range[0, 10^6], PalindromeQ[#] && PalindromeQ[#^2] &]^2 (* Robert Price, Apr 26 2019 *)

Formula

a(n) = A057135(n)^2