This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057151 #13 Nov 18 2018 20:43:11 %S A057151 1,1,2,4,8,18,41,102,252,666,1789,5031,14486,43280,132777,420267, %T A057151 1366307,4566966,15661086,55081118,198425478,731661754,2758808581, %U A057151 10629386376,41814350148,167830018952,686822393793,2864024856054,12162059027416,52564545391789 %N A057151 Number of square binary matrices with n ones, with no zero rows or columns, up to row and column permutation. %C A057151 Number of square binary matrices with n ones and with no zero rows or columns is A104602(n). - _Vladeta Jovovic_, Mar 25 2006 %C A057151 Also the number of non-isomorphic square set multipartitions (multisets of sets) of weight n. A multiset partition or hypergraph is square if its length (number of blocks or edges) is equal to its number of vertices. The weight of a multiset partition is the sum of sizes of its parts. - _Gus Wiseman_, Nov 16 2018 %H A057151 Max Alekseyev, <a href="/A057151/b057151.txt">Table of n, a(n) for n = 1..30</a> %e A057151 There are 666 square binary matrices with 10 ones, with no zero rows or columns, up to row and column permutation: 33 of size 4 X 4, 248 of size 5 X 5, 288 of size 6 X 6, 79 of size 7 X 7, 15 of size 8 X 8, 2 of size 9 X 9 and 1 of size 10 X 10. Cf. A057150. %e A057151 From _Gus Wiseman_, Nov 16 2018: (Start) %e A057151 Non-isomorphic representatives of the a(1) = 1 through a(6) = 18 square set multipartitions: %e A057151 {1} {1}{2} {2}{12} {12}{12} {1}{23}{23} {12}{13}{23} %e A057151 {1}{2}{3} {1}{1}{23} {2}{13}{23} {1}{23}{123} %e A057151 {1}{3}{23} {2}{3}{123} {13}{23}{23} %e A057151 {1}{2}{3}{4} {3}{13}{23} {3}{23}{123} %e A057151 {3}{3}{123} {1}{1}{1}{234} %e A057151 {1}{2}{2}{34} {1}{1}{24}{34} %e A057151 {1}{2}{4}{34} {1}{1}{4}{234} %e A057151 {1}{2}{3}{4}{5} {1}{2}{34}{34} %e A057151 {1}{3}{24}{34} %e A057151 {1}{3}{4}{234} %e A057151 {1}{4}{24}{34} %e A057151 {1}{4}{4}{234} %e A057151 {2}{4}{12}{34} %e A057151 {3}{4}{12}{34} %e A057151 {4}{4}{12}{34} %e A057151 {1}{2}{3}{3}{45} %e A057151 {1}{2}{3}{5}{45} %e A057151 {1}{2}{3}{4}{5}{6} %e A057151 (End) %Y A057151 Cf. A049311, A056037, A056079, A056080, A057149, A057150, A057152. %Y A057151 Cf. A054976, A101370, A104601, A104602, A120732, A283877, A319616. %K A057151 nonn %O A057151 1,3 %A A057151 _Vladeta Jovovic_, Aug 14 2000 %E A057151 More terms from _Max Alekseyev_, May 31 2007