cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057159 Numbers k that divide s(k-1), where s(1) = 1, s(k) = s(k-1) + (k+1)*3^k.

This page as a plain text file.
%I A057159 #42 May 25 2022 02:53:45
%S A057159 4,13,35,52,95,119,169,676,11596,57577,159484,276773,360139,1345747,
%T A057159 56193997,60640957,604170268,807129973
%N A057159 Numbers k that divide s(k-1), where s(1) = 1, s(k) = s(k-1) + (k+1)*3^k.
%C A057159 No other terms below 300000. - _Vaclav Kotesovec_, May 05 2018
%C A057159 {s(n)} = {1, 28, 136, 541, 1999, 7102, 24598, ...}; 4*s(n) = 3^(n+1)*(2n+1) - 23, with g.f. x*(-1-21*x+45*x^2) / ( (x-1)*(-1+3*x)^2 ). - _R. J. Mathar_, May 05 2018
%t A057159 seq = RecurrenceTable[{s[n] == s[n - 1] + (n + 1)*3^n, s[1] == 1}, s, {n, 1, 20000}]; Select[Range[1, Length[seq]], Divisible[seq[[# - 1]], #] &] (* _Vaclav Kotesovec_, May 05 2018 *)
%K A057159 nonn,more
%O A057159 1,1
%A A057159 _Robert G. Wilson v_, Sep 13 2000
%E A057159 Minor edits by _Altug Alkan_, May 05 2018
%E A057159 a(10)-a(12) from _Vaclav Kotesovec_, May 05 2018
%E A057159 a(13)-a(14) from _Chai Wah Wu_, Aug 26 2021
%E A057159 a(15)-a(16) from _Chai Wah Wu_, Sep 02 2021
%E A057159 a(17)-a(18) from _Sean A. Irvine_, May 25 2022