cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057175 Numbers n such that (9^n + 1)/10 is a prime.

This page as a plain text file.
%I A057175 #46 Feb 16 2025 08:32:43
%S A057175 3,59,223,547,773,1009,1823,3803,49223,193247,703393,860029
%N A057175 Numbers n such that (9^n + 1)/10 is a prime.
%C A057175 Repunit primes in base -9. - _Paul Bourdelais_
%H A057175 P. Bourdelais, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;417ab0d6.0906">A Generalized Repunit Conjecture</a>
%H A057175 H. Dubner and T. Granlund, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/DUBNER/dubner.html">Primes of the Form (b^n+1)/(b+1)</a>, J. Integer Sequences, 3 (2000), #P00.2.7.
%H A057175 H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a>
%H A057175 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Repunit.html">Repunit</a>
%t A057175 lst={};Do[p=(9^n+1)/10;If[PrimeQ[p], AppendTo[lst, n]], {n, 7!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Sep 29 2008 *)
%t A057175 Select[Range[4000], PrimeQ[(9^# + 1)/10] &] (* _Vincenzo Librandi_, Aug 03 2015 *)
%o A057175 (PFGW v3.3.1 from primeform.net) pfgw -b2 -f10 bNeg9.txt::
%o A057175 ABC2 (9^$a+1)/10 // -f{4*$a}
%o A057175 a: primes from 3 to 1e6}
%o A057175 (Magma) [n: n in [0..800] | IsPrime((9^n + 1) div 10 )]; // _Vincenzo Librandi_, Aug 03 2015
%o A057175 (PARI) first(m)=my(v=vector(m));t=0;for(i=1,m,while(!isprime((9^t + 1)\10),t++);v[i]=t;t++;);v; \\ _Anders Hellström_, Aug 16 2015
%K A057175 nonn
%O A057175 1,1
%A A057175 _N. J. A. Sloane_, Sep 15 2000
%E A057175 a(9) corresponds to a probable prime, was discovered on Oct 22 2007. Trial factored to 1E11 with Fermat base 2 primality test. - _Paul Bourdelais_
%E A057175 a(10) corresponds to a probable prime, discovered by _Paul Bourdelais_, Feb 01 2010
%E A057175 a(11) corresponds to a probable prime, discovered by _Paul Bourdelais_, Aug 03 2015
%E A057175 a(12) corresponds to a probable prime, discovered by _Paul Bourdelais_, Sep 23 2020