This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057198 #59 Aug 28 2023 14:37:40 %S A057198 3,8,23,68,203,608,1823,5468,16403,49208,147623,442868,1328603, %T A057198 3985808,11957423,35872268,107616803,322850408,968551223,2905653668, %U A057198 8716961003,26150883008,78452649023,235357947068,706073841203,2118221523608 %N A057198 a(n) = (5*3^(n-1)+1)/2. %C A057198 It appears that if s(n) is a first-order rational sequence of the form s(0)=4, s(n) = (2*s(n-1)+1)/(s(n-1)+2), n > 0, then s(n) = a(n)/(a(n)-1), n > 0. %H A057198 Vincenzo Librandi, <a href="/A057198/b057198.txt">Table of n, a(n) for n = 1..1000</a> %H A057198 Nathan Fox, <a href="https://arxiv.org/abs/1611.08244">A Slow Relative of Hofstadter's Q-Sequence</a>, arXiv:1611.08244 [math.NT], 2016. %H A057198 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3). %F A057198 a(n+1) = 3*a(n) - 1 for n > 1. - _Reinhard Zumkeller_, Jan 22 2011 %F A057198 G.f.: (5/2)*U(0) where U(k) = 1 + 2/(5*3^k + 5*3^k/(1 - 30*x*3^k/(15*x*3^k - 1/U(k+1)))); (continued fraction, 4-step). - _Sergei N. Gladkovskii_, Nov 01 2012 %F A057198 E.g.f.: (5/2)*U(0) where U(k) = 1 + 2/(5*3^k + 5*3^k/(1 - 30*x*3^k/(15*x*3^k - (k+1)/U(k+1)))); (continued fraction, 4-step). - _Sergei N. Gladkovskii_, Nov 01 2012 %F A057198 G.f.: x*(3-4*x) / ( (3*x-1)*(x-1) ). - _R. J. Mathar_, Jan 25 2015 %F A057198 E.g.f.: (5*exp(3*x) + 3*exp(x) - 8)/6. - _Stefano Spezia_, Aug 28 2023 %e A057198 G.f. = 3*x + 8*x^2 + 23*x^3 + 68*x^4 + 203*x^5 + 608*x^6 + 1823*x^7 + 5468*x^8 + ... %t A057198 Table[(5*3^(n-1) + 1)/2, {n, 30}] (* _T. D. Noe_, Oct 11 2012 *) %o A057198 (PARI) a(n)=(5*3^(n-1)+1)/2 \\ _Charles R Greathouse IV_, Oct 11 2012 %o A057198 (Magma) [(5*3^(n-1) + 1)/2: n in [1..30]]; // _Vincenzo Librandi_, Oct 11 2012 %Y A057198 Related to A046901. %Y A057198 Equals A060816 + 1. %Y A057198 Cf. A135423 (bisection), A191450 (2nd row). %K A057198 nonn,easy %O A057198 1,1 %A A057198 _Colin Mallows_ and _N. J. A. Sloane_, Sep 16 2000 %E A057198 Incorrect zeroth term removed by _Jon Perry_, Oct 11 2012