This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057205 #16 Dec 12 2021 20:00:33 %S A057205 3,11,131,17291,298995971,8779,594359,59,151,983,19, %T A057205 38851089348584904271503421339, %U A057205 2359886893253830912337243172544609142020402559023,823818731,2287,7,9680188101680097499940803368598534875039120224550520256994576755856639426217960921548886589841784188388581120523,163,83,1471,34211,2350509754734287,23567 %N A057205 Primes congruent to 3 modulo 4 generated recursively: a(n) = Min_{p, prime; p mod 4 = 3; p|4Q-1}, where Q is the product of all previous terms in the sequence. The initial term is 3. %D A057205 P. G. L. Dirichlet (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages. %D A057205 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13. %e A057205 a(4) = 17291 = 4*4322 + 3 is the smallest prime divisor congruent to 3 (mod 4) of Q = 3*11*131 - 1 = 17291. %t A057205 a={3}; q=1; %t A057205 For[n=2,n<=7,n++, %t A057205 q=q*Last[a]; %t A057205 AppendTo[a,Min[Select[FactorInteger[4*q-1][[All,1]],Mod[#,4]==3&]]]; %t A057205 ]; %t A057205 a (* _Robert Price_, Jul 18 2015 *) %Y A057205 Cf. A000945, A000946, A005265, A005266, A051308-A051335, A002476, A057204-A057208. %K A057205 nonn %O A057205 1,1 %A A057205 _Labos Elemer_, Oct 09 2000 %E A057205 More terms from _Phil Carmody_, Sep 18 2005 %E A057205 Terms corrected and extended by _Sean A. Irvine_, Oct 23 2014